test_that("integer (data.frame, compile, single zone)", {
# import data
sim_pu_data <- get_sim_pu_polygons()
sim_pu_data <- sf::st_drop_geometry(sim_pu_data)[1:5, , drop = FALSE]
sim_pu_data$id <- c(1, 3, 90, 5, 2)
sim_pu_data$cost <- c(1, NA, 3, 4, 8)
sim_pu_data$spp_1 <- runif(5)
sim_pu_data$spp_2 <- runif(5)
sim_pu_data$spp_3 <- runif(5)
# create problem
p <-
problem(sim_pu_data, c("spp_1", "spp_2", "spp_3"), cost_column = "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_proportion_decisions() %>%
add_locked_out_constraints(c(1, 3, 90, 2))
suppressWarnings(o <- compile(p))
# calculations for tests
locked_pos <- c(1, 2, 4)
other_pos <- c(3)
# tests
expect_true(all(o$lb()[locked_pos] == 0))
expect_true(all(o$ub()[locked_pos] == 0))
expect_true(all(o$lb()[other_pos] == 0))
expect_true(all(o$ub()[other_pos] == 1))
})
test_that("integer (sf, compile, single zone)", {
# import data
sim_pu_polygons <- get_sim_pu_polygons()
sim_features <- get_sim_features()
# set locked cells
sim_pu_polygons$cost[2] <- NA_real_
locked_out <- c(1, 3)
# create problem
p <-
problem(sim_pu_polygons, sim_features, cost_column = "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(locked_out)
suppressWarnings(o <- compile(p))
# check that constraints added correctly
expect_equal(
o$ub(),
c(0, 0, rep(1, sum(!is.na(sim_pu_polygons$cost)) - 2))
)
# invalid inputs
p <-
problem(sim_pu_polygons, sim_features, cost_column = "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions()
expect_tidy_error(add_locked_out_constraints(p, -1))
expect_tidy_error(add_locked_out_constraints(p, 9.6))
expect_tidy_error(add_locked_out_constraints(p, 1e6))
})
test_that("integer (solve, single zone)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
# create problem
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
suppressWarnings({
p <-
problem(sim_pu_raster, sim_features) %>%
add_max_utility_objective(budget = 1e6) %>%
add_binary_decisions() %>%
add_locked_out_constraints(seq_len(terra::ncell(sim_pu_raster))) %>%
add_default_solver(time_limit = 5, verbose = FALSE)
expect_warning(s1 <- solve(p, force = TRUE))
expect_warning(s2 <- solve(p, force = TRUE))
})
# check that the solution obeys constraints as expected
expect_equal(
terra::cells(is.na(s1), 0)[[1]],
terra::cells(is.na(sim_pu_raster), 0)[[1]]
)
expect_true(isTRUE(all(s1[!is.na(s1)][, 1] == 0)))
expect_equal(terra::values(s1), terra::values(s2))
})
test_that("logical (compile, single zone)", {
# import problem
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
# create data
locked_out <- c(rep(TRUE, 20), rep(FALSE, terra::ncell(sim_pu_raster) - 20))
# create problem
p <-
problem(sim_pu_raster, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(locked_out)
o <- compile(p)
# calculations for tests
locked_out_cells <- which(locked_out)
locked_out_indices <- match(
locked_out_cells,
terra::cells(is.na(sim_pu_raster)[[1]], 0)
)
locked_out_indices <- locked_out_indices[!is.na(locked_out_indices)]
# tests
expect_true(all(o$ub()[locked_out_indices] == 0))
expect_true(all(o$ub()[-locked_out_indices] == 1))
expect_tidy_error(p %>% add_locked_out_constraints(c(TRUE)))
# tests for invalid inputs
expect_tidy_error(
p %>%
add_locked_out_constraints(
c(TRUE, NA, rep(FALSE, terra::ncell(sim_pu_raster) - 2))
)
)
})
test_that("logical (solve, single zone)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
# import data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
# create locked out data
locked_out <- c(rep(TRUE, 20), rep(FALSE, terra::ncell(sim_pu_raster) - 20))
# create and solve problem
s <-
problem(sim_pu_raster, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(locked_out) %>%
add_default_solver(time_limit = 5, verbose = FALSE) %>%
solve()
# calculations for tests
locked_out_cells <- which(locked_out)
locked_out_units <- locked_out_cells[
locked_out_cells %in% terra::cells(is.na(s), 0)[[1]]
]
# tests
expect_true(all(s[locked_out_units] == 0))
})
test_that("integer (compile, multiple zones)", {
# load data
sim_zones_pu_raster <- get_sim_zones_pu_raster()
sim_zones_features <- get_sim_zones_features()
# create locked data
status <- matrix(
FALSE, nrow = terra::ncell(sim_zones_pu_raster),
ncol = number_of_zones(sim_zones_features)
)
locked_out_ind <- terra::cells(is.na(sim_zones_pu_raster[[1]]), 0)[[1]][1:20]
status[locked_out_ind, 1] <- TRUE
# create targets data
targets <- matrix(
0, nrow = number_of_features(sim_zones_features),
ncol = number_of_zones(sim_zones_features)
)
targets[, 1] <- 1
# create problem
p <-
problem(sim_zones_pu_raster, sim_zones_features) %>%
add_min_set_objective() %>%
add_absolute_targets(targets) %>%
add_binary_decisions() %>%
add_locked_out_constraints(status)
o <- compile(p)
# calculations for tests
other_ind <- seq(21, p$number_of_planning_units() * p$number_of_zones())
# tests
expect_true(all(o$ub()[1:20] == 0))
expect_true(all(o$ub()[other_ind] == 1))
expect_tidy_error({
p %>% add_locked_out_constraints({s <- status; s[1, 1] <- 2; s})
})
})
test_that("integer (solve, multiple zones)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
# import data
sim_zones_pu_raster <- get_sim_zones_pu_raster()
sim_zones_features <- get_sim_zones_features()
# create locked data
status <- matrix(
FALSE, nrow = terra::ncell(sim_zones_pu_raster),
ncol = number_of_zones(sim_zones_features)
)
locked_out_ind <- terra::cells(is.na(sim_zones_pu_raster[[1]]), 0)[[1]][1:20]
status[locked_out_ind, 1] <- TRUE
# create targets data
targets <- matrix(
0, nrow = number_of_features(sim_zones_features),
ncol = number_of_zones(sim_zones_features)
)
targets[, 1] <- 1
# create and solve problem
s <-
problem(sim_zones_pu_raster, sim_zones_features) %>%
add_min_set_objective() %>%
add_absolute_targets(targets) %>%
add_binary_decisions() %>%
add_locked_out_constraints(status) %>%
add_default_solver(time_limit = 5, verbose = FALSE) %>%
solve()
# tests
expect_true(all(as.matrix(s[[1]][locked_out_ind]) == 0))
})
test_that("character (compile, single zone)", {
# import data
sim_pu_polygons <- get_sim_pu_polygons()
sim_features <- get_sim_features()
# create problem
p <-
problem(sim_pu_polygons, sim_features, "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints("locked_out")
o <- compile(p)
# tests
expect_true(all(o$ub()[which(sim_pu_polygons$locked_out)] == 0))
# tests for invalid inputs
expect_tidy_error({
sim_pu_polygons$locked_out <- as.integer(sim_pu_polygons$locked_out)
problem(sim_pu_polygons, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints("locked_out")
})
expect_tidy_error({
problem(sim_pu_polygons, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(NA_character_)
})
expect_tidy_error({
problem(sim_pu_polygons, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints("column_name_that_doesnt_exist")
})
expect_tidy_error({
problem(sim_pu_polygons, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints("cost")
})
})
test_that("character (solve, single zone)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
# iomport data
sim_pu_polygons <- get_sim_pu_polygons()
sim_features <- get_sim_features()
# create problem
s <-
problem(sim_pu_polygons, sim_features, "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints("locked_out") %>%
add_default_solver(time_limit = 5, verbose = FALSE) %>%
solve()
# tests
expect_true(all(s$solution_1[which(sim_pu_polygons$locked_out)] == 0))
})
test_that("character (solve, proportion decisions, single zone", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
# import data
sim_pu_polygons <- get_sim_pu_polygons()
sim_features <- get_sim_features()
# create and solve problem
s <-
problem(sim_pu_polygons, sim_features, "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_proportion_decisions() %>%
add_locked_out_constraints("locked_out") %>%
add_default_solver(time_limit = 5, verbose = FALSE) %>%
solve()
# tests
expect_true(all(s$solution_1[which(sim_pu_polygons$locked_out)] == 0))
})
test_that("character (compile, multiple zones)", {
# import data
sim_zones_pu_polygons <- get_sim_zones_pu_polygons()
sim_zones_features <- get_sim_zones_features()
# create locked data
sim_zones_pu_polygons$locked_1 <- FALSE
sim_zones_pu_polygons$locked_2 <- FALSE
sim_zones_pu_polygons$locked_3 <- FALSE
sim_zones_pu_polygons$locked_1[1:20] <- TRUE
# create targets data
targets <- matrix(
0, nrow = number_of_features(sim_zones_features),
ncol = number_of_zones(sim_zones_features)
)
targets[, 1] <- 1
# create problem
p <-
problem(
sim_zones_pu_polygons, sim_zones_features,
c("cost_1", "cost_2", "cost_3")
) %>%
add_min_set_objective() %>%
add_relative_targets(targets) %>%
add_binary_decisions() %>%
add_locked_out_constraints(c("locked_1", "locked_2", "locked_3"))
o <- compile(p)
# calculations for tests
locked_ind <- seq_len(20)
other_ind <- seq(21, p$number_of_planning_units() * p$number_of_zones())
# tests
expect_true(all(o$ub()[locked_ind] == 0))
expect_true(all(o$ub()[other_ind] == 1))
# tests for invalid inputs
expect_tidy_error({
sim_zones_pu_polygons <- get_sim_zones_pu_polygons()
sim_zones_features <- get_sim_zones_features()
sim_zones_pu_polygons$locked_1 <- FALSE
sim_zones_pu_polygons$locked_2 <- FALSE
sim_zones_pu_polygons$locked_3 <- FALSE
sim_zones_pu_polygons$locked_1[1] <- 2
problem(
sim_zones_pu_polygons, sim_zones_features,
c("cost_1", "cost_2", "cost_3")
) %>%
add_min_set_objective() %>%
add_relative_targets(targets) %>%
add_binary_decisions() %>%
add_locked_out_constraints(c("locked_1", "locked_2", "locked_3"))
})
})
test_that("character (solve, multiple zones)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
# import data
sim_zones_pu_polygons <- get_sim_zones_pu_polygons()
sim_zones_features <- get_sim_zones_features()
# create targets data
targets <- matrix(
0, nrow = number_of_features(sim_zones_features),
ncol = number_of_zones(sim_zones_features)
)
targets[, 1] <- 1
# create locked data
sim_zones_pu_polygons$locked_1 <- FALSE
sim_zones_pu_polygons$locked_2 <- FALSE
sim_zones_pu_polygons$locked_3 <- FALSE
sim_zones_pu_polygons$locked_1[1:20] <- TRUE
# create and solve problem
s <-
problem(
sim_zones_pu_polygons, sim_zones_features,
c("cost_1", "cost_2", "cost_3")
) %>%
add_min_set_objective() %>%
add_absolute_targets(targets) %>%
add_binary_decisions() %>%
add_locked_out_constraints(c("locked_1", "locked_2", "locked_3")) %>%
add_default_solver(time_limit = 5, verbose = FALSE) %>%
solve()
# tests
expect_true(all(s$solution_1_zone_1[sim_zones_pu_polygons$locked_1] == 0))
})
test_that("character (solve, proportion decisions, multiple zones)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
# import data
sim_zones_pu_polygons <- get_sim_zones_pu_polygons()
sim_zones_features <- get_sim_zones_features()
# create targets data
targets <- matrix(0, nrow = number_of_features(sim_zones_features),
ncol = number_of_zones(sim_zones_features))
targets[, 1] <- 1
# create locked data
sim_zones_pu_polygons$locked_1 <- FALSE
sim_zones_pu_polygons$locked_2 <- FALSE
sim_zones_pu_polygons$locked_3 <- FALSE
sim_zones_pu_polygons$locked_1[1:20] <- TRUE
# create and solve problem
s <-
problem(
sim_zones_pu_polygons, sim_zones_features,
c("cost_1", "cost_2", "cost_3")
) %>%
add_min_set_objective() %>%
add_absolute_targets(targets) %>%
add_proportion_decisions() %>%
add_locked_out_constraints(c("locked_1", "locked_2", "locked_3")) %>%
add_default_solver(verbose = FALSE) %>%
solve()
# tests
expect_true(all(s$solution_1_zone_1[sim_zones_pu_polygons$locked_1] == 0))
})
test_that("raster (compile, single zone)", {
# import data
sim_pu_raster <- get_sim_pu_raster()
sim_locked_out_raster <- get_sim_locked_out_raster()
sim_features <- get_sim_features()
# create problem
p <-
problem(sim_pu_raster, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(sim_locked_out_raster)
o <- compile(p)
# calculations for constraints
locked_out_cells <- terra::cells(
sim_locked_out_raster & !is.na(sim_pu_raster), 1
)[[1]]
locked_out_indices <- match(
locked_out_cells,
terra::cells(is.na(sim_pu_raster), 0)[[1]]
)
# tests
expect_true(all(o$ub()[locked_out_indices] == 0))
expect_true(all(o$ub()[-locked_out_indices] == 1))
# tests for invalid inputs
expect_tidy_error({
d <- get_sim_locked_out_raster()
terra::ext(d) <- c(0, 20, 0, 20)
p %>% add_locked_out_constraints(d)
})
expect_tidy_error({
d <- get_sim_locked_out_raster()
terra::crs(d) <- as.character(
sf::st_crs("+proj=longlat +datum=WGS84 +no_defs")
)[[2]]
p %>% add_locked_out_constraints(d)
})
expect_tidy_error({
p %>%
add_locked_out_constraints(
terra::setValues(get_sim_locked_out_raster(), NA)
)
})
expect_tidy_error({
p %>%
add_locked_out_constraints(
terra::setValues(get_sim_locked_out_raster(), NA)
)
})
})
test_that("raster (solve, single zone)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
# import data
sim_pu_raster <- get_sim_pu_raster()
sim_locked_out_raster <- get_sim_locked_out_raster()
sim_features <- get_sim_features()
# create and solve problem
s <-
problem(sim_pu_raster, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(sim_locked_out_raster) %>%
add_default_solver(time_limit = 5, verbose = FALSE) %>%
solve()
# calculations for tests
locked_out_cells <- terra::cells(
sim_locked_out_raster & !is.na(sim_pu_raster), 1
)[[1]]
# tests
expect_true(all(s[locked_out_cells] == 0))
})
test_that("raster (compile, multiple zones)", {
# import data
sim_zones_pu_raster <- get_sim_zones_pu_raster()
sim_zones_features <- get_sim_zones_features()
# calculate targets data
targets <- matrix(
0, nrow = number_of_features(sim_zones_features),
ncol = number_of_zones(sim_zones_features)
)
targets[, 1] <- 1
# calculate locked data
status <- sim_zones_pu_raster
status[[1]][!is.na(status[[1]])] <- 0
status[[1]][terra::cells(is.na(status[[1]]), 0)[[1]][1:20]] <- 1
status[[2]][!is.na(status[[2]])] <- 0
status[[3]][!is.na(status[[3]])] <- 0
# create problem
p <-
problem(sim_zones_pu_raster, sim_zones_features) %>%
add_min_set_objective() %>%
add_absolute_targets(targets) %>%
add_binary_decisions() %>%
add_locked_out_constraints(status)
o <- compile(p)
# calculations for tests
locked_ind <- seq_len(20)
other_ind <- seq(21, p$number_of_planning_units() * p$number_of_zones())
# tests
expect_true(all(o$ub()[locked_ind] == 0))
expect_true(all(o$ub()[other_ind] == 1))
})
test_that("raster (solve, multiple zones)", {
# create problem
skip_on_cran()
skip_if_no_fast_solvers_installed()
# import data
sim_zones_pu_raster <- get_sim_zones_pu_raster()
sim_zones_features <- get_sim_zones_features()
# create targets data
targets <- matrix(
0, nrow = number_of_features(sim_zones_features),
ncol = number_of_zones(sim_zones_features)
)
targets[, 1] <- 1
# create locked data
status <- sim_zones_pu_raster
status[[1]][!is.na(status[[1]])] <- 0
status[[1]][terra::cells(is.na(status[[1]]), 0)[[1]][1:20]] <- 1
status[[2]][!is.na(status[[2]])] <- 0
status[[3]][!is.na(status[[3]])] <- 0
# create and solve problems
s <-
problem(sim_zones_pu_raster, sim_zones_features) %>%
add_min_set_objective() %>%
add_absolute_targets(targets) %>%
add_binary_decisions() %>%
add_locked_out_constraints(status) %>%
add_default_solver(time_limit = 5, verbose = FALSE) %>%
solve()
# calculations for tests
locked_out_cells <- terra::cells(status[[1]] == 1, 1)[[1]]
# tests
expect_true(all(s[[1]][locked_out_cells] == 0))
})
test_that("deprecated spatial (compile, single zone)", {
# import data
sim_pu_polygons <- get_sim_pu_polygons()
sim_features <- get_sim_features()
# create problem
expect_warning(
p <-
problem(sim_pu_polygons, sim_features, "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(
sf::as_Spatial(sim_pu_polygons[sim_pu_polygons$locked_out, ])
),
"deprecated"
)
o <- compile(p)
# calculations for tests
locked_out_units <- which(sim_pu_polygons$locked_out)
# tests
expect_true(all(o$ub()[locked_out_units] == 0))
expect_true(all(o$ub()[-locked_out_units] == 1))
# tests for invalid inputs
expect_tidy_error({
sim_pu_polygons <- sf::as_Spatial(get_sim_pu_polygons())
sim_features <- raster::stack(get_sim_features())
problem(sim_pu_polygons[1:10, ], sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(sim_pu_polygons[50:55, ])
})
expect_tidy_error({
sim_pu_polygons <- sf::as_Spatial(get_sim_pu_polygons())
sim_features <- raster::stack(get_sim_features())
problem(sim_pu_polygons[1:10, ], sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(sim_pu_polygons[0, ])
})
expect_tidy_error({
sim_pu_polygons <- get_sim_pu_polygons()
sim_features <- get_sim_features()
sim_pu_polygons2 <- sim_pu_polygons[1:10, ]
suppressWarnings(sf::st_crs(sim_pu_polygons2) <- sf::st_crs(3857))
problem(sim_pu_polygons, sim_features) %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(sim_pu_polygons2)
})
})
test_that("spatial (solve, single zone)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
# import data
sim_pu_polygons <- get_sim_pu_polygons()
sim_features <- get_sim_features()
# create locked data
locked_ply <- sim_pu_polygons[sim_pu_polygons$locked_out, ]
# create and solve problem
s <-
problem(sim_pu_polygons, sim_features, "cost") %>%
add_min_set_objective() %>%
add_relative_targets(0.1) %>%
add_binary_decisions() %>%
add_locked_out_constraints(locked_ply) %>%
add_default_solver(time_limit = 5, verbose = FALSE) %>%
solve()
# calculations for tests
locked_out_units <- which(sim_pu_polygons$locked_out)
# tests
expect_true(all(s$solution_1[locked_out_units] == 0))
})
test_that("spatial (compile, multiple zones, expect error)", {
# import data
sim_zones_pu_polygons <- get_sim_zones_pu_polygons()
sim_zones_features <- get_sim_zones_features()
# create targets data
targets <- matrix(
0, nrow = number_of_features(sim_zones_features),
ncol = number_of_zones(sim_zones_features)
)
targets[, 1] <- 1
# tests
expect_tidy_error({
problem(
sim_zones_pu_polygons, sim_zones_features,
c("cost_1", "cost_2", "cost_3")
) %>%
add_min_set_objective() %>%
add_absolute_targets(targets) %>%
add_binary_decisions() %>%
add_locked_out_constraints(sim_zones_pu_polygons[seq_len(20), ]) %>%
add_default_solver(verbose = FALSE) %>%
solve()
})
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.