#' Given a corpus and a binary grouping variable, computes the ratio of cosine similarities
#' over the union of their respective N nearest neighbors.
#'
#' This is a wrapper function for `nns_ratio()` that allows users to go from a
#' tokenized corpus to results with the option to: (1) bootstrap cosine similarity ratios
#' and get the corresponding std. errors. (2) use a permutation test to get empirical
#' p-values for inference.
#'
#' @param x a (quanteda) tokens object
#' @inheritParams nns_ratio
#' @inheritParams dem
#' @inheritParams dem
#' @inheritParams dem_group
#' @param numerator (character) defines which group is the nuemerator in the ratio.
#' @param bootstrap (logical) if TRUE, use bootstrapping -- sample from texts with replacement and
#' re-estimate cosine similarity ratios for each sample. Required to get std. errors.
#' If `groups` defined, sampling is automatically stratified.
#' @param num_bootstraps (integer) number of bootstraps to use.
#' @param confidence_level (numeric in (0,1)) confidence level e.g. 0.95
#' @param permute (logical) if TRUE, compute empirical p-values using permutation test
#' @param num_permutations (numeric) number of permutations to use.
#' @param stem (logical) - whether to stem candidates when evaluating nns. Default is FALSE.
#' If TRUE, candidate stems are ranked by their average cosine similarity to the target.
#' We recommend you remove misspelled words from candidate set `candidates` as these can
#' significantly influence the average.
#' @inheritParams SnowballC::wordStem
#' @param verbose provide information on which group is the numerator
#'
#' @return a `data.frame` with following columns:
#' \describe{
#' \item{`feature`}{(character) features in `candidates`
#' (or all features if `candidates` not defined), one instance for each embedding in `x`.}
#' \item{`value`}{(numeric) cosine similarity ratio between `x`
#' and feature. Average over bootstrapped samples if bootstrap = TRUE.}
#' \item{`std.error`}{(numeric) std. error of the similarity value.
#' Column is dropped if bootstrap = FALSE.}
#' \item{`lower.ci`}{(numeric) (if bootstrap = TRUE) lower bound of the confidence interval.}
#' \item{`upper.ci`}{(numeric) (if bootstrap = TRUE) upper bound of the confidence interval.}
#' \item{`p.value`}{(numeric) empirical p-value of bootstrapped ratio
#' of cosine similarities if permute = TRUE, if FALSE, column is dropped.}
#' \item{`group`}{(character) group in `groups` for which feature belongs
#' to the top N nearest neighbors. If "shared", the feature appeared as
#' top nearest neighbor for both groups.}
#' }
#'
#' @export
#' @rdname get_nns_ratio
#' @keywords get_nns_ratio
#' @examples
#'
#' library(quanteda)
#'
#' # tokenize corpus
#' toks <- tokens(cr_sample_corpus)
#'
#' # build a tokenized corpus of contexts sorrounding a target term
#' immig_toks <- tokens_context(x = toks, pattern = "immigration", window = 6L)
#'
#' # sample 100 instances of the target term, stratifying by party (only for example purposes)
#' set.seed(2022L)
#' immig_toks <- tokens_sample(immig_toks, size = 100, by = docvars(immig_toks, 'party'))
#'
#' # we limit candidates to features in our corpus
#' feats <- featnames(dfm(immig_toks))
#'
#' # compute ratio
#' set.seed(2021L)
#' immig_nns_ratio <- get_nns_ratio(x = immig_toks,
#' N = 10,
#' groups = docvars(immig_toks, 'party'),
#' numerator = "R",
#' candidates = feats,
#' pre_trained = cr_glove_subset,
#' transform = TRUE,
#' transform_matrix = cr_transform,
#' bootstrap = TRUE,
#' num_bootstraps = 100,
#' permute = FALSE,
#' num_permutations = 5,
#' verbose = FALSE)
#'
#' head(immig_nns_ratio)
get_nns_ratio <- function(x,
N = 10,
groups,
numerator = NULL,
candidates = character(0),
pre_trained,
transform = TRUE,
transform_matrix,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
permute = TRUE,
num_permutations = 100,
stem = FALSE,
language = 'porter',
verbose = TRUE,
show_language = TRUE){
# initial checks
if(class(x)[1] != "tokens") stop("data must be of class tokens")
if(bootstrap && (confidence_level >= 1 || confidence_level<=0)) stop('"confidence_level" must be a numeric value between 0 and 1.', call. = FALSE) # check confidence level is between 0 and 1
if(bootstrap && num_bootstraps < 100) stop('num_bootstraps must be at least 100') # check num_bootstraps >= 100
# stemming check
if(stem){
if (requireNamespace("SnowballC", quietly = TRUE)) {
cat('Using', language, 'for stemming. To check available languages run "SnowballC::getStemLanguages()"', '\n')
} else stop('"SnowballC (>= 0.7.0)" package must be installed to use stemmming option.')
}
# checks
group_vars <- as.character(unique(groups))
if(is.null(group_vars) | length(group_vars)!=2) stop("a binary grouping variable must be provided")
if(!is.null(numerator)){
if(!(numerator %in% group_vars)) stop("numerator must refer to one of the two groups in the groups argument")
numerator <- as.character(numerator)
}else{
numerator <- group_vars[1]
cat("NOTE: setting", numerator, "as the numerator", "\n")
}
denominator <- setdiff(group_vars, numerator)
# add grouping variable to docvars
if(!is.null(groups)) quanteda::docvars(x) <- NULL; quanteda::docvars(x, "group") <- groups
# create document-feature matrix
x_dfm <- quanteda::dfm(x, tolower = FALSE)
# compute document-embedding matrix
x_dem <- dem(x = x_dfm, pre_trained = pre_trained, transform = transform, transform_matrix = transform_matrix, verbose = FALSE)
# aggregate dems by group var
wvs <- dem_group(x = x_dem, groups = x_dem@docvars$group)
# subset candidates to features present in pre-trained embeddings provided
if(length(candidates) > 0) candidates <- intersect(candidates, rownames(pre_trained))
# get top N nns (if N is Inf or NULL, use all features)
nnsdfs <- nns(x = wvs, N = Inf, candidates = candidates, pre_trained = pre_trained, stem = stem, language = language, as_list = TRUE, show_language = FALSE)
nnsdf1 <- if(is.null(N)) nnsdfs[[numerator]]$feature else nnsdfs[[numerator]]$feature[1:N]
nnsdf2 <- if(is.null(N)) nnsdfs[[denominator]]$feature else nnsdfs[[denominator]]$feature[1:N]
# get union of top N nns
union_nns <- union(nnsdf1, nnsdf2)
if(!bootstrap){
# find nearest neighbors ratio
result <- nns_ratio(x = wvs, N = N, numerator = numerator, candidates = candidates, pre_trained = pre_trained, stem = stem, language = language, show_language = FALSE) %>% dplyr::filter(feature %in% union_nns)
}else{
cat('starting bootstraps \n')
# bootstrap ratio
nnsratiodf_bs <- replicate(num_bootstraps,
nns_ratio_boostrap(x = x_dem,
groups = x_dem@docvars$group,
numerator = numerator,
candidates = candidates,
pre_trained = pre_trained,
stem = stem,
language = language),
simplify = FALSE)
result <- do.call(rbind, nnsratiodf_bs) %>%
dplyr::group_by(feature) %>%
dplyr::mutate(lower.ci = dplyr::nth(value, round((1-confidence_level)*num_bootstraps), order_by = value),
upper.ci = dplyr::nth(value, round(confidence_level*num_bootstraps), order_by = value)) %>%
dplyr::summarise(std.error = sd(value),
value = mean(value),
lower.ci = mean(lower.ci),
upper.ci = mean(upper.ci),
.groups = 'keep') %>%
dplyr::ungroup() %>%
dplyr::select('feature','value', 'std.error', 'lower.ci', 'upper.ci') %>%
dplyr::filter(feature %in% union_nns) %>%
dplyr::arrange(-value)
cat('done with bootstraps \n')
}
if(permute){
# permute similarity
cat('starting permutations \n')
permute_out <- replicate(num_permutations, nns_ratio_permute(x,
groups = groups,
numerator = numerator,
candidates = candidates,
pre_trained = pre_trained,
transform = transform,
transform_matrix = transform_matrix,
stem = stem,
language = language),
simplify = FALSE)
# compute deviations of the observed ratios from 1
dev1 <- result %>% dplyr::mutate(value = abs(value - 1)) %>% as.data.frame()
permute_out <- lapply(permute_out, function(perm) perm %>% dplyr::filter(feature %in% union_nns))
dev1_perm <- lapply(permute_out, function(perm) perm[order(match(perm[,1],dev1[,1])),'value'])
dev1_perm <- do.call(rbind, dev1_perm)
dev1_perm <- abs(dev1_perm - 1)
dev1_perm <- apply(dev1_perm, 1, function(i) i >= dev1$value)
p.value <- apply(dev1_perm, 1, function(i) sum(i)/length(i))
result <- result %>% dplyr::mutate(p.value = p.value)
cat('done with permutations \n')
}
# add information on nns
result <- result %>% dplyr::mutate(group = dplyr::case_when((feature %in% nnsdf1) & (feature %in% nnsdf2) ~ "shared",
(feature %in% nnsdf1) & !(feature %in% nnsdf2) ~ numerator,
!(feature %in% nnsdf1) & (feature %in% nnsdf2) ~ denominator))
# add an attribute specifying which group is the numerator and communicated this to user
attr(result, "numerator") <- numerator
if(verbose) cat("NOTE: values refer to the ratio", paste0(numerator, "/", denominator, "."), "\n")
return(result)
}
# sub-function
nns_ratio_boostrap <- function(x,
groups,
numerator = NULL,
candidates = character(0),
pre_trained = pre_trained,
stem = stem,
language = language){
# sample dems with replacement
x_sample_dem <- dem_sample(x = x, size = 1, replace = TRUE, by = groups)
# aggregate dems by group
wvs <- dem_group(x = x_sample_dem, groups = x_sample_dem@docvars$group)
# find nearest neighbors
result <- nns_ratio(x = wvs, N = NULL, numerator = numerator, candidates = candidates, pre_trained = pre_trained, stem = stem, language = language, verbose = FALSE, show_language = FALSE)
return(result)
}
# runs permutations
nns_ratio_permute <- function(x,
groups,
numerator = NULL,
candidates = character(0),
pre_trained,
transform = TRUE,
transform_matrix,
stem = stem,
language = language){
# shuffle tokenized texts
quanteda::docvars(x, 'group') <- sample(groups)
# create document-feature matrix
x_dfm <- quanteda::dfm(x, tolower = FALSE)
# compute document-embedding matrix
x_dem <- dem(x = x_dfm, pre_trained = pre_trained, transform = transform, transform_matrix = transform_matrix, verbose = FALSE)
# aggregate dems by group
wvs <- dem_group(x = x_dem, groups = x_dem@docvars$group)
# find nearest neighbors
result <- nns_ratio(x = wvs, N = NULL, numerator = numerator, candidates = candidates, pre_trained = pre_trained, stem = stem, language = language, verbose = FALSE, show_language = FALSE)
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.