caribou_forecast <-
function(settings, tmax=20, pop.start=100, fpen.prop, fpen.inds)
{
if (tmax < 1)
stop("Argument tmax must be >= 1.")
if (abs(round(tmax) - tmax) > 0.0001)
warning("Argument tmax was rounded to nearest integer.")
tmax <- as.integer(round(tmax)) # this must be integer
if (pop.start < 1)
stop("Argument pop.start must be >= 1.")
if (abs(round(pop.start) - pop.start) > 0.0001)
warning("Argument pop.start was rounded to nearest integer.")
pop.start <- as.integer(round(pop.start))
## penned prop or inds
if (missing(fpen.prop))
fpen.prop <- NULL
if (missing(fpen.inds))
fpen.inds <- NULL
if (!is.null(fpen.prop) && !is.null(fpen.inds)) {
stop("Provide fpen.prop or fpen.inds but not both.")
}
fpen.inds.vec <- numeric(tmax) # default is 0
if (is.null(fpen.prop) && is.null(fpen.inds)) {
USE_PROP <- TRUE
fpen.prop <- 0
}
if (!is.null(fpen.prop) && is.null(fpen.inds)) {
if (length(fpen.prop) > 1)
stop("Penned proportion must be a single value.")
if (fpen.prop > 1 || fpen.prop < 0)
stop("Argument fpen.prop must be in the [0, 1] interval.")
USE_PROP <- TRUE
}
if (is.null(fpen.prop) && !is.null(fpen.inds)) {
if (any(fpen.inds < 0))
stop("Argument fpen.inds must not be negative.")
USE_PROP <- FALSE
# do not round
#fpen.inds <- as.integer(fpen.inds)
# cannot be longer than tmax - silently truncated
if (length(fpen.inds) > tmax)
fpen.inds <- fpen.inds[seq_len(tmax)]
fpen.inds.vec[seq_along(fpen.inds)] <- fpen.inds
}
## settings
pen.type <- attr(settings, "type")
## Cost
pen.cap <- settings$pen.cap
## one time cost
pen.cost1 <- settings$pen.cost.setup
## yearly costs
pen.cost2 <- settings$pen.cost.proj +
settings$pen.cost.maint +
settings$pen.cost.capt +
settings$pen.cost.pred
## Caribou vital rates
c.surv.capt <- settings$c.surv.capt
c.surv.wild <- settings$c.surv.wild
f.surv.wild <- settings$f.surv.wild
f.surv.capt <- settings$f.surv.capt
preg <- settings$f.preg.wild
f.preg.capt <- settings$f.preg.capt
## get stable stage distribution for year 1
if (!USE_PROP) {
## initial proportion (yr 1)
fpen.prop <- fpen.inds.vec[1] / pop.start
}
# mean female surv = weighted av. of pen/wild vitals
surv.f <- fpen.prop*f.surv.capt + (1-fpen.prop)*f.surv.wild
# and for pregnancy
preg.f <- fpen.prop*f.preg.capt + (1-fpen.prop)*preg
surv.c <- fpen.prop*c.surv.capt + (1-fpen.prop)*c.surv.wild
A <- matrix(c(
0, 0, 0, 0.5*preg.f*surv.f,# Fecundity of stages
surv.c, 0, 0, 0, # Survival of stage (age) 0-1
0, surv.f, 0, 0, # Survival of stage (age) 1-2
0, 0, surv.f, surv.f),# Survival of stage (age) 2-3, and 3+
nrow=4, byrow=TRUE)
# extract stable stage distribution
Stable.st <- eigen.analysis(A)$stable.stage
# assign correct # of animals to each age class
Nstart <- matrix(pop.start*Stable.st, ncol=1)
#Nstart <- matrix(pop.start*Stable.st/Stable.st[4], ncol=1) # 2018-11-04
# starting populations for time loop
N1 <- N2 <- Nstart
# loop through time to project population
for(i in seq_len(tmax)) {
## reset prop for later years (divide by rep.adult.pen)
if (!USE_PROP) {
## original code says: fpen.prop <- fpen.inds.vec[i] / N1[4,]
## but I think it should be the cumulative number,
## but we need to incorporate mortality,
## therefore new penned inds added to fpen.prop*N1[4,]
fpen.prop <- (fpen.inds.vec[i] + fpen.prop*N1[4,]) / N1[4,]
}
# .f1 denotes vitals for pop that's partially penned
surv.f1 <- fpen.prop*f.surv.capt + (1-fpen.prop)*f.surv.wild
preg.f1 <- fpen.prop*f.preg.capt + (1-fpen.prop)*preg
surv.c1 <- fpen.prop*c.surv.capt + (1-fpen.prop)*c.surv.wild
# .f2 denotes vitals for pop that's entirely wild
surv.f2 <- f.surv.wild
preg.f2 <- preg
surv.c2 <- c.surv.wild
A1 <- matrix(c(
0, 0, 0, 0.5*preg.f1*surv.f1, # population with penning
surv.c1, 0, 0, 0,
0, surv.f1, 0, 0,
0, 0, surv.f1, surv.f1),
nrow=4, byrow=TRUE)
A2 <- matrix(c(
0, 0, 0, 0.5*preg.f2*surv.f2, # population without penning
surv.c2, 0, 0, 0,
0, surv.f2, 0, 0,
0, 0, surv.f2, surv.f2),
nrow=4, byrow=TRUE)
# performance of pen pop if pen removed, at t
pen.removed <- A2 %*% N1
# project population (w/pen) to t
N1 <- A1 %*% N1
# project population (no pen) to t
N2 <- A2 %*% N2
# eigen analysis of each population
eigs.A1 <- eigen.analysis(A1)
eigs.A2 <- eigen.analysis(A2)
# demographic boost of the pen, in yr. t
pen.diff <- N1 - pen.removed
# additional juves from penning, time t
juv.from.pen.t <- pen.diff[2,]
# additional adults from penning, time t?
adult.from.pen.t <- sum(pen.diff[3:4,])
# how many total reproductive adults in penned pop
rep.adult.pen <- N1[4,]
# how many total rep. adults in wild pop
rep.adult.nopen <- N2[4,]
# total pop. size of penned pop
tot.pen <- sum(N1[,1])
# how many adult females in the pen?
#tot.adult.in.pen = N1[4,1]*fpen.prop
tot.adult.in.pen = N1[4,1]
# total pop. size of wild pop
tot.nopen <- sum(N2[,1])
# how many new bou made in time t?
new.bou.t <- tot.pen-tot.nopen
#### Calculate costs of penning
# how many pens exist at time t-1?
if (i==1) {
pens.avail <- 0
} else {
pens.avail <- pens.needed
}
# no partial pens allowed... current pen needs.
pens.needed <- ceiling(round(tot.adult.in.pen)/pen.cap)
new.pens <- max(0, pens.needed-pens.avail)
num.pens <- pens.avail + new.pens
pens.cost.t <- (pen.cost1*new.pens + # cost to construct new pens
pen.cost2*num.pens)/1000 # cost to maintain all pens
# how much will these pens cost per new bou?
pens.cost.per.bou <- pens.cost.t/new.bou.t
# cumulative cost of penning
if (i==1) {
pens.cost.cum <- pens.cost.t
} else {
pens.cost.cum <- sum(pens.cost.t, Npop$pens.cost.t)
}
# cumulative caribou produced
if (i==1) {
cum.bou <- new.bou.t
} else {
cum.bou <- sum(new.bou.t, Npop$new.bou.t)
}
# cost per bou: cumulative cost/cum caribou pop diff
pens.cost.cum.bou <- pens.cost.cum/cum.bou
Nt <- data.frame(
lam.pen = eigs.A1$lambda1,
lam.nopen = eigs.A2$lambda1, # store the data for time t
N.pen = tot.pen,
N.nopen = tot.nopen,
new.bou.t = new.bou.t,
pens.needed = pens.needed,
pens.cost.t = pens.cost.t,
pens.cost.per.bou = pens.cost.per.bou,
pens.cost.cum = pens.cost.cum,
pens.cost.cum.bou = pens.cost.cum.bou,
rep.adult.pen = rep.adult.pen,
rep.adult.nopen = rep.adult.nopen,
juv.from.pen.t = juv.from.pen.t,
adult.from.pen.t = adult.from.pen.t,
s.c.pop.pen= surv.c1,
s.c.pop.nopen=surv.c2,
s.f.pop.pen = surv.f1,
s.f.pop.nopen = surv.f2)
# store the data for all t
if (i==1) {
Npop <- Nt
} else {
Npop <- rbind(Npop, Nt)
}
} # end time (years) loop
Npop.r1 <- data.frame(
lam.pen = eigs.A1$lambda1,
lam.nopen = eigs.A2$lambda1, # make data for year 0 (start)
N.pen = sum(Nstart),
N.nopen = sum(Nstart),
new.bou.t=0,
pens.needed= 0,
pens.cost.t = 0,
pens.cost.per.bou = 0,
pens.cost.cum = 0,
pens.cost.cum.bou = 0,
rep.adult.pen = Nstart[4,],
rep.adult.nopen= Nstart[4,],
juv.from.pen.t = 0,
adult.from.pen.t = 0,
s.c.pop.pen= surv.c1,
s.c.pop.nopen = surv.c2,
s.f.pop.pen = surv.f1,
s.f.pop.nopen=surv.f2)
# add year 0 data to projection data
Npop <- rbind(Npop.r1, Npop)
# summaries
Nend_nopen <- floor(Npop$N.nopen[tmax + 1L])
Nend_pen <- floor(Npop$N.pen[tmax + 1L])
Nend_diff <- Nend_pen - Nend_nopen
Cost_total <- sum(Npop$pens.cost.t)
Cost_percap <- if (Nend_diff <= 0) NA else Cost_total / Nend_diff
out <- list(
Npop=Npop,
settings=settings,
tmax=tmax,
pop.start=pop.start,
fpen.prop=NULL,
fpen.inds=NULL,
npens=Npop$pens.needed[tmax + 1L],
lam.pen=Npop$lam.pen[tmax + 1L],
lam.nopen=Npop$lam.nopen[tmax + 1L],
Nend.nopen = Nend_nopen,
Nend.pen = Nend_pen,
Nend.diff = Nend_diff,
Cost.total = Cost_total,
Cost.percap = Cost_percap)
if (USE_PROP) {
out$fpen.prop <- fpen.prop
} else {
out$fpen.inds <- fpen.inds
}
class(out) <- "caribou_forecast"
out$call <- match.call()
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.