### Model to simulate the demographic effects of maternal penning, Pred exclosure areas, and habitat restoration
### on woodland caribou, along with likely economic effectiveness
# By Sophie Gilbert and Rob Serrouya
# Version: 10/29/2018
### load libraries:
library(popbio) # popbio has a lot of good tools for population dynamics
library(reshape2) # this lets us reshape matrices and arrays (change the dimensions)
library(abind) # this lets us bind arrays (like matrices) into 3-D stacks, like pages of a book
##### There are 3 components to the model: the habitat restoration model, the penning model, and the main model
#### Penning submodel: evaluate 2 types of pens, a maternal pen and a predator exclusion area
##### initial conditions:
tmax = 20 # how many years to run sim?
pop.start = 100 # initial population size (females >2 years old)
fem.numeric = T # option. If this is selected "on" and next line is commented "off", numeric rather than percent
fem.numeric = F # If this is not commented out, will use percent penned rather than numeric
fem.pen.num.vec = seq(0, 100, 1) # vary number of females penned
fem.pen.prop.vec = seq(0,1, 0.01) # vary proportion of females penned
fem.pen.prop.vec[36]=0.35 # fix weird R problem : (
############## Series of loops ot vary pen type, proportion of females penned, etc. ##################
for(q in 1:2){
if(q==1){pen.type = "mat.pen"}else{pen.type = "pred.excl"}
if(pen.type=="mat.pen"){ # If evaluating the maternal pen...
pen.cap = 35; # how many individual caribou can live in mat pen?
pen.cost1 = 500; # cost in thousands to set up pen
pen.cost2 = 200; # cost in thousands for shepherd
pen.cost3 = 250; # cost in thousands to capture cows, monitor, survey, calf collar
pen.cost4 = 100; # unexpected contingency/repair costs
pen.cost5 = 80 # costs of project manager
}
if(pen.type=="pred.excl"){ # If evaluating the predator exclusion pen...
pen.cap = 35; # how many individual caribou can live in big pen?
pen.cost1 = (77*24) + 20; # cost in thousands to set up pen, & xtra cost of initial pred removal in yr1
pen.cost2 = 80; # cost in thousands for removing predators annually
pen.cost3 = 500; # cost in thousands for patrolling and repairing fence
pen.cost4 = 200; # cost in thousands to capture cows, monitor, survey, calf collar
pen.cost5 = 100 # unexpected contingencies costs
}
## Caribou vital rates
if(pen.type=="mat.pen"){
c.surv1.capt = 0.9; # calf survival rate when captive, 0-1 month
c.surv2.capt = 0.6; # calf survival rate when captive, 1-12 months
c.surv.capt = c.surv1.capt*c.surv2.capt; # calf survival rate when captive, annual
c.surv.wild = 0.163; # calf survival rate in the wild, annual
f.surv.wild = 0.853; # maternal survival when wild, annual
f.surv.capt = 0.903 ; # maternal survival when captive higher than wild
preg = 0.92; # pregnancy rate, same for captive and wild
f.preg.capt = preg # pregnancy rate, same for captive and wild
}
## Caribou vital rates, predator exclusion pen
if(pen.type=="pred.excl"){
c.surv1.capt = 0.9; # calf survival rate when captive, 0-1 month
c.surv2.capt = 0.8; # calf survival rate when captive, 1-12 months
c.surv.capt = c.surv1.capt*c.surv2.capt; # calf survival rate when captive, annual
c.surv.wild = 0.163; # calf survival rate in the wild, annual
f.surv.wild = 0.853; # maternal survival when wild, annual
f.surv.capt = 0.95; # maternal survival when captive higher than wild
preg = 0.92; # pregnancy rate, same for captive and wild
f.preg.capt = preg # pregnancy rate, same for captive and wild
}
############### Code to calculate
for(k in 1:length(fem.pen.prop.vec)){ # loop through proportions of females penned
fem.pen.prop = fem.pen.prop.vec[k]
### get stable stage distribution for year 1 ###
if(fem.numeric==T){fpen.prop = fem.pen.num/pop.start}else{fpen.prop=fem.pen.prop} # females penned is either a rate or numeric
surv.f = fpen.prop*f.surv.capt + (1-fpen.prop)*f.surv.wild # mean female surv = weighted av. of pen/wild vitals
preg.f = fpen.prop*f.preg.capt + (1-fpen.prop)*preg # and for pregnancy
surv.c = fpen.prop*c.surv.capt + (1-fpen.prop)*c.surv.wild
A = matrix(c( 0, 0, 0, 0.5*preg.f*surv.f, # Fecundity of stages
surv.c, 0, 0, 0, # Survival of stage (age) 0-1
0, surv.f, 0, 0, # Survival of stage (age) 1-2
0, 0, surv.f, surv.f), # Survival of stage (age) 2-3, and 3+
nrow=4, byrow=T)
Stable.st = eigen.analysis(A)$stable.stage # extract stable stage distribution
Nstart=matrix(c((Stable.st[1]/Stable.st[4])*pop.start, # number of females in each class
(Stable.st[2]/Stable.st[4])*pop.start,
(Stable.st[3]/Stable.st[4])*pop.start, # so that number of adult (class 4 females)
pop.start), ncol=1) # is = to pop.start
tmax=tmax # number of time steps
N1 = N2 = Nstart # starting populations for time loop
for(t in 1:tmax) { # loop through time to project population
fpen.prop=fem.pen.prop
surv.f1 = fpen.prop*f.surv.capt + (1-fpen.prop)*f.surv.wild # .f1 denotes vitals for pop that's partially penned
preg.f1 = fpen.prop*f.preg.capt + (1-fpen.prop)*preg
surv.c1 = fpen.prop*c.surv.capt + (1-fpen.prop)*c.surv.wild
surv.f2 = f.surv.wild # .f2 denotes vitals for pop that's entirely wild
preg.f2 = preg
surv.c2 = c.surv.wild
A1 = matrix(c( 0, 0, 0, 0.5*preg.f1*surv.f1, # population with penning
surv.c1, 0, 0, 0,
0, surv.f1, 0, 0,
0, 0, surv.f1, surv.f1),
nrow=4, byrow=T)
A2 = matrix(c( 0, 0, 0, 0.5*preg.f2*surv.f2, # population without penning
surv.c2, 0, 0, 0,
0, surv.f2, 0, 0,
0, 0, surv.f2, surv.f2),
nrow=4, byrow=T)
pen.removed = A2%*%N1 # performance of pen pop if pen removed, at t
N1 = A1%*%N1 # project population (w/pen) to t
N2 = A2%*%N2 # project population (no pen) to t
eigs.A1 = eigen.analysis(A1) # eigen analysis of each population
eigs.A2 = eigen.analysis(A2)
pen.diff = N1 - pen.removed # demographic boost of the pen, in yr. t
juv.from.pen.t = pen.diff[2,] # additional juves from penning, time t
adult.from.pen.t = sum(pen.diff[3:4,]) # additional adults from penning, time t?
rep.adult.pen = N1[4,] # how many total reproductive adults in penned pop
rep.adult.nopen =N2[4,] # how many total rep. adults in wild pop
tot.pen = sum(N1[,1]) # total pop. size of penned pop
tot.adult.in.pen = N1[4,1]*fpen.prop # how many adult females in the pen?
tot.nopen = sum(N2[,1]) # total pop. size of wild pop
new.bou.t = tot.pen-tot.nopen # how many new bou made in time t?
# Calculate costs of penning
if(t==1){pens.avail= 0}else{pens.avail=pens.needed} # how many pens exist at time t-1?
pens.needed = ceiling(round(tot.adult.in.pen)/pen.cap) # no partial pens allowed... current pen needs.
new.pens = pens.needed-pens.avail
num.pens = pens.avail + new.pens
pens.cost.t = (pen.cost1*new.pens + # cost to construct new pens
pen.cost2*num.pens + # cost to maintain all pens
pen.cost3*num.pens +
pen.cost4*num.pens +
pen.cost5*num.pens)/1000
pens.cost.per.bou = pens.cost.t/new.bou.t # how much will these pens cost per new bou?
if(t==1){pens.cost.cum=pens.cost.t}else{pens.cost.cum=sum(pens.cost.t, Npop$pens.cost.t)} # cumulative cost of penning
if(t==1){cum.bou = new.bou.t}else{cum.bou =sum(new.bou.t, Npop$new.bou.t)} # cumulative caribou produced
pens.cost.cum.bou=pens.cost.cum/cum.bou # cost per bou: cumulative cost/cum caribou pop diff
Nt = data.frame( lam.pen = eigs.A1$lambda1, lam.nopen = eigs.A2$lambda1, # store the data for time t
N.pen = tot.pen, N.nopen = tot.nopen,
new.bou.t = new.bou.t,
pens.needed = pens.needed, pens.cost.t = pens.cost.t,
pens.cost.per.bou = pens.cost.per.bou, pens.cost.cum = pens.cost.cum, pens.cost.cum.bou = pens.cost.cum.bou,
rep.adult.pen = rep.adult.pen, rep.adult.nopen=rep.adult.nopen,
juv.from.pen.t = juv.from.pen.t, adult.from.pen.t = adult.from.pen.t,
s.c.pop.pen= surv.c1, s.c.pop.nopen=surv.c2,
s.f.pop.pen = surv.f1, s.f.pop.nopen=surv.f2
)
if(t==1){Npop = Nt}else{Npop=rbind(Npop, Nt)} # store the data for all t
} # end time (years) loop
Npop.r1 = data.frame( lam.pen = eigs.A1$lambda1, lam.nopen = eigs.A2$lambda1, # make data for year 0 (start)
N.pen = sum(Nstart), N.nopen = sum(Nstart),
new.bou.t=0,
pens.needed= 0, pens.cost.t = 0,
pens.cost.per.bou = 0, pens.cost.cum = 0, pens.cost.cum.bou = 0,
rep.adult.pen = Nstart[4,], rep.adult.nopen= Nstart[4,],
juv.from.pen.t = 0, adult.from.pen.t = 0,
s.c.pop.pen= surv.c1, s.c.pop.nopen=surv.c2,
s.f.pop.pen = surv.f1, s.f.pop.nopen=surv.f2)
Npop=rbind(Npop.r1, Npop) # add year 0 data to projection data
if(k==1){Nstack = Npop}else{Nstack=abind(Nstack, Npop, along=3)}
} # end proportion penned loop
if(pen.type=="mat.pen"){Nstack1 = Nstack}else{Nstack2 = Nstack}
} # end pen type loop
############ Plot results ################
hab.time = read.csv("~/Google Drive/Gilbert_Projects/Caribou_Canada/Penning Econ/Output_files/output.hab.time.csv")
hab.cost = read.csv("~/Google Drive/Gilbert_Projects/Caribou_Canada/Penning Econ/Output_files/output.hab.cost.csv")
quartz(width=6.5, height=2.5)
par(mar=c(4,4.1,4,2.9)+.1, mfrow=c(1,3))
ylim1= c(0, 450)
ylim2=c(0, 40)
ylim3 = c(0, 1)
xlab1 = "Years"
legend.y = 450
col1 = "goldenrod"
col2 = "darkorange3"
col3 = "red3"
col4 = "dodgerblue3"
col5 = "seagreen3"
### Panel A: time series of population sizes, maternal penning
plot(1:(tmax+1), data.frame(Nstack1[,,1])$rep.adult.nopen, ylab="Population size", xlab = xlab1, ylim=ylim1, type="l", lty=1, col = "black", las =1)
lines(1:(tmax+1), data.frame(Nstack1[,,which(fem.pen.prop.vec==0.35)])$rep.adult.pen, lty=2, col=col2)
lines(1:(tmax+1), data.frame(Nstack1[,,which(fem.pen.prop.vec==0.50)])$rep.adult.pen, lty=3, col = col3)
lines(1:(tmax+1), data.frame(Nstack1[,,which(fem.pen.prop.vec==0.75)])$rep.adult.pen, lty=4, col = col4)
#lines(1:(tmax+1), data.frame(Nstack1[,,which(fem.pen.prop.vec==1)])$rep.adult.pen, lty=5, col = col5)
legend(1, y=legend.y, legend = c("0% penned", "35% penned", "50% penned", "75% penned"), lty = c(1,2,3,4), cex= 0.8, box.col="transparent",
col = c("black", col2, col3, col4))
mtext("a", at = -1, line = 2, font = 1)
### Panel B: time series of population sizes, predator exclusion penning
plot(1:(tmax+1), data.frame(Nstack2[,,1])$rep.adult.nopen, ylab="", xlab = xlab1, ylim=ylim1, type="l", lty=1, col = "black", las =1)
lines(1:(tmax+1), data.frame(Nstack2[,,which(fem.pen.prop.vec==0.35)])$rep.adult.pen, lty=2, col=col2)
lines(1:(tmax+1), data.frame(Nstack2[,,which(fem.pen.prop.vec==0.50)])$rep.adult.pen, lty=3, col = col3)
lines(1:(tmax+1), data.frame(Nstack2[,,which(fem.pen.prop.vec==0.75)])$rep.adult.pen, lty=4, col = col4)
#lines(1:(tmax+1), data.frame(Nstack2[,,which(fem.pen.prop.vec==1)])$rep.adult.pen, lty=5, col = col5)
mtext("b", at = -1, line = 2, font = 1)
### Panel C: time series of population sizes, habitat restoration
plot(1:20, hab.time$cum.lam.BA.Deac*100, col="darkred",type="l", xlab="Years", ylab="", ylim = ylim1, lty=2, las=1)
lines(1:20, hab.time$cum.lam.BA.Base*100, col="black", lty=1)
lines(1:20, hab.time$cum.lam.BA.LRest*100, col="darkred", lty=3)
legend(1, y = legend.y, legend=c("Baseline", "Restoration", "Deactivation"),
box.col="transparent", col=c("black", "darkred", "darkred"),
lty = c(1,2,3), cex= 0.8)
mtext("c", at = -1, line = 2, font = 1)
### Calculate some costs for different penning proportions, for a table
lam.pen.vec1 = data.frame(pen.prop = fem.pen.prop.vec, pen.lam = c(Nstack1[1,1,]))
break.even1 = lam.pen.vec1$pen.pro[which(lam.pen.vec1$pen.lam>=1)]
break.even1 = break.even1[1]
lam.pen.vec2 = data.frame(pen.prop = fem.pen.prop.vec, pen.lam = c(Nstack2[1,1,]))
break.even2 = lam.pen.vec2$pen.pro[which(lam.pen.vec2$pen.lam>=1)]
break.even2 = break.even2[1]
pen1.35 <- round(data.frame(Nstack1[,,which(fem.pen.prop.vec==0.35)]), digits=2)
new1.bou.35 <- round(sum(pen1.35$rep.adult.pen[nrow(pen1.35)]-pen1.35$rep.adult.nopen[nrow(pen1.35)]), digits=0)
cost1.bou.35 <- round(sum(pen1.35$pens.cost.t)/new1.bou.35, digits=2)
cost1.lamb.35 <- sum(pen1.35$pens.cost.t)/(new1.bou.35/100)
pen2.35 <- round(data.frame(Nstack2[,,which(fem.pen.prop.vec==0.35)]), digits=2)
new2.bou.35 <- round(sum(pen2.35$rep.adult.pen[nrow(pen2.35)]-pen2.35$rep.adult.nopen[nrow(pen2.35)]), digits=0)
cost2.bou.35 <- round(sum(pen2.35$pens.cost.t)/new2.bou.35, digits=2)
cost2.lamb.35 <- sum(pen2.35$pens.cost.t)/(new2.bou.35/100)
pen1.even <- round(data.frame(Nstack1[,,which(fem.pen.prop.vec==break.even1)]), digits=2) # 57% penned, mat pen
new1.bou.even <- round(sum(pen1.even$rep.adult.pen[nrow(pen1.even)]-pen1.even$rep.adult.nopen[nrow(pen1.even)]), digits=0)
cost1.bou.even <- round(sum(pen1.even$pens.cost.t)/new1.bou.even, digits=2)
cost1.lamb.even <- sum(pen1.even$pens.cost.t)/(new1.bou.even/100)
pen2.even <- round(data.frame(Nstack2[,,which(fem.pen.prop.vec==break.even1)]), digits=2) # 57% penned, safe haven
new2.bou.even <- round(sum(pen2.even$rep.adult.pen[nrow(pen2.even)]-pen2.even$rep.adult.nopen[nrow(pen2.even)]), digits=0)
cost2.bou.even <- round(sum(pen2.even$pens.cost.t)/new2.bou.even, digits=2)
cost2.lamb.even <- sum(pen2.even$pens.cost.t)/(new2.bou.even/100)
hab.cost1 = hab.cost[hab.cost$Nstart==100, ]
caribou.cost = data.frame(
Method = c("Vitals base","Hab base","Mat pen, 35%", "*Mat pen, 57%", "*PEA., 35%", "PEA., 57%","Hab rest", "Hab deact"),
N.end = c(pen1.35$rep.adult.nopen[nrow(pen2.35)], hab.cost1$Nend.BA.Base, pen1.35$rep.adult.pen[nrow(pen1.35)], 100, 100, pen2.even$rep.adult.pen[nrow(pen1.35)], hab.cost1$Nend.BA.LRest, hab.cost1$Nend.BA.Deac),
N.new = c("--", "--", new1.bou.35, new1.bou.even, new2.bou.35, new2.bou.even, round(hab.cost1$Nend.BA.LRest-hab.cost1$Nend.BA.Base, digits=0), round(hab.cost1$Nend.BA.Deac-hab.cost1$Nend.BA.Base, digits=0)),
Cost.cum = c("--", "--", sum(pen1.35$pens.cost.t), sum(pen1.even$pens.cost.t), sum(pen2.35$pens.cost.t), sum(pen2.even$pens.cost.t), 175.5, 175.5),
Cost.bou = c("--", "--", cost1.bou.35, cost1.bou.even, cost2.bou.35, cost2.bou.even, 175.5/round(hab.cost1$Nend.BA.LRest-hab.cost1$Nend.BA.Base, digits=0), round(175.5/round(hab.cost1$Nend.BA.Deac-hab.cost1$Nend.BA.Base, digits=0), digits=1)))
write.table(caribou.cost, "~/Google Drive/Gilbert_Projects/Caribou_Canada/Penning Econ/Output_files/output.allcosts.csv", sep=",", row.names=F)
##### costs plot
barplot(rbind(as.numeric(as.character(caribou.cost$N.new[3:8])), as.numeric(as.character(caribou.cost$Cost.cum[3:8])), as.numeric(as.character(caribou.cost$Cost.bou[3:8]))*10), beside=T,
las=1, ylim=c(0, 250), col=c("black", "grey50", "red"),
names.arg=caribou.cost$Method[3:8],)
legend(x=1, y=250, legend=c("New caribou produced", "Cost, $CAD millions", "Cost per 10 caribou"), fill=c("black", "grey50", "red"), box.col="transparent")
################### Now sensitivity analysis for vital rates ####
# data to do sensitivity analysis on:
c.surv.capt.sen = expand.grid(seq(0.05, 1, 0.05), f.surv.wild, preg)
f.surv.capt.sen = expand.grid(c.surv.wild, seq(0.05, 1, 0.05), preg)
f.preg.capt.sen = expand.grid(c.surv.wild, f.surv.wild, seq(0.05, 1, 0.05))
sens.vecs= list(c.surv.capt.sen, f.surv.capt.sen, f.preg.capt.sen) #list of all the sensitivities we want to evaluate
names(sens.vecs) = c("calf", "fem", "preg")
fem.pen.prop.vec = seq(0,1, 0.01)
#produces a list for each vital rate varied (in-pen calf survival, female survival, .s; .c; pregnancy, .p)
# p loop goes through each vital rate (3)
# j loop goes through each vital's sensitivity seuence (0.1 to 1, by 0.05, = 19 list elements)
# k loops through proportion of female papulation penned = 101 rows)
# within k loop, we produce 11 variables = 11 columns
# Each output, sen.c, sen.s, and sen.p, = 101 x 11 x 19 list
cex = 2.0
for(p in 1:length(sens.vecs)){ # loop through which vital rate varies (3 vitals)
sens.dat = data.frame(sens.vecs[[p]]) # vital rate data for this loop
vital = names(sens.vecs)[p] # name of vital rate that varies
for(j in 1:nrow(sens.dat)){ # loop through the variations on the vital rate in question (sequence)
c.surv.capt = sens.dat[j,1] # assign value for calf survival in pen
f.surv.capt = sens.dat[j,2] # assign value for female survival in pen
f.preg.capt = sens.dat[j,3] # assign value for female pregancy in pen
for(k in 1:length(fem.pen.prop.vec)){ # loop through diff. proportions of females penned
fem.pen.prop = fem.pen.prop.vec[k] # proportion of females penned
### get stable stage distribution for year 1 ###
if(fem.numeric==T){fpen.prop = fem.pen.num/pop.start}else{fpen.prop=fem.pen.prop}
surv.f = fpen.prop*f.surv.capt + (1-fpen.prop)*f.surv.wild # average female survival rate for pop
preg.f = fpen.prop*f.preg.capt + (1-fpen.prop)*preg # average female pregnancy rate for pop
surv.c = ((fpen.prop*f.preg.capt/preg.f)*c.surv.capt) + # average calf surv rate for pop, depends on preg rate too
((1-fpen.prop)*preg/preg.f*c.surv.wild)
A.best = matrix(c( 0, 0, 0, 0.5*f.preg.capt*f.surv.capt, # Fertility of stages
c.surv.capt, 0, 0, 0, # Survival of stage (age) 0-1
0, f.surv.capt, 0, 0, # Survival of stage (age) 1-2
0, 0, f.surv.capt, f.surv.capt), # Survival of stage (age) 2-3, and 3+
nrow=4, byrow=T)
# A: matrix for the average population
A = matrix(c( 0, 0, 0, 0.5*preg.f*surv.f, # Fertility of stages
surv.c, 0, 0, 0, # Survival of stage (age) 0-1
0, surv.f, 0, 0, # Survival of stage (age) 1-2
0, 0, surv.f, surv.f), # Survival of stage (age) 2-3, and 3+
nrow=4, byrow=T)
if(fem.numeric==T){fpen.prop = fem.pen.num/N1[4,]}else{fpen.prop=fem.pen.prop}
surv.f1 = fpen.prop*f.surv.capt + (1-fpen.prop)*f.surv.wild
surv.f2 = f.surv.wild
preg.f1 = fpen.prop*f.preg.capt + (1-fpen.prop)*preg
preg.f2 = preg
surv.c1 = fpen.prop*c.surv.capt + (1-fpen.prop)*c.surv.wild
surv.c2 = c.surv.wild
A1 = matrix(c( 0, 0, 0, 0.5*preg.f1*surv.f1, # population with penning
surv.c1, 0, 0, 0,
0, surv.f1, 0, 0,
0, 0, surv.f1, surv.f1),
nrow=4, byrow=T)
A2 = matrix(c( 0, 0, 0, 0.5*preg.f2*surv.f2, # population without penning
surv.c2, 0, 0, 0,
0, surv.f2, 0, 0,
0, 0, surv.f2, surv.f2), # Survival of stages
nrow=4, byrow=T)
eigs.Abest = lambda(A.best)
eigs.A1 = lambda(A1)
eigs.A2 = lambda(A2)
Nt = data.frame( lam.pen = eigs.A1,
lam.nopen = eigs.A2,
lam.allpenned = eigs.Abest,
pen.prop = fem.pen.prop,
f.surv.capt = f.surv.capt,
f.preg.capt = f.preg.capt,
c.sur.capt = c.surv.capt,
s.c.pop.pen= surv.c1, s.c.pop.nopen=surv.c2,
s.f.pop.pen = surv.f1, s.f.pop.nopen=surv.f2
)
if(k==1){Npop = Nt}else{Npop=rbind(Npop, Nt)}
} # end proportion penned loop
if(j==1){Nstack = Npop}else{Nstack =abind(Nstack, Npop, along=3) }
}
if(p==1){sen.c = Nstack}
if(p==2){sen.f = Nstack}
if(p==3){sen.p = Nstack}
}
#sen.c # sensitivity of calf survival:
#sen.f # sensitivity of female survival
#sen.p # sensitivity of pregnancy rate
# plot proportion penned needed to get lambda = 1 across a range of vital rates
col.fun = colorRampPalette(c("black","grey20", "grey40","white"))
col.lam = col.fun(10000)
lam.dat.c = sen.c[,1,]
min.lam = 0
max.lam = max(lam.dat.c)
lam.seq = seq(min.lam, max.lam, (max.lam-min.lam)/(length(col.lam)-1))
dat.plot = list(sen.f, sen.p, sen.c)
dim.vit = c(5,6,7)
name.vit = c("Fem survival", "Fem pregnancy", "Calf survival")
par(mfrow=c(1,3))
for(n in 1:3){
plot(seq(0.05,1, 0.05), seq(0.05, 1, 0.05), col="transparent", xlab=name.vit[n], ylab = "Proportion penned")
dat = dat.plot[[n]]
for(i in 1:dim(dat)[1]){
dat.pen = dat[i,4,] # pen proportions for vital rate
dat.vit = dat[i,dim.vit[n],] # vital rate varies
dat.lam = dat[i,1,] # lambda for penned population
for(k in 1:length(dat.pen)){
col.match = col.lam[findInterval(lam.seq, c(dat.lam[k]-0.0001, dat.lam[k]+0.0001))==1]
col.plot = col.match[1]
lam.mat = dat.lam[k]
col=col.plot
#col = "grey"
if(lam.mat>=1.00){col="darkturquoise"}
points(dat.vit[k], dat.pen[k], col =col, pch=15, cex=cex)
}
}
if(n==1){abline(v=f.surv.wild, lwd=2, col="red")}
if(n==2){abline(v=preg, lwd=2, col="red")}
if(n==3){abline(v=c.surv.wild, lwd=2, col="red")}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.