#' @title Estimates beta from a given R0
#'
#' @description Estimates beta for an epidemic with a given R0 in a specific population in a spatial dataset,
#' and calculates the expanded kernel matrix (expanded_D) to use when simulating an epidemic.
#'
#' @return Returns the value of beta and assigns the expanded_D matrix to the global environment.
#'
#' @param spatial_data The spatial_dataset containing the population data.
#' @param dist_kernel The distance kernel matrix.
#' @param contact_mat The contact matrix for mixing between age groups.
#' @param R0 The desired value for R0.
#' @param sigma The desired value for the recovery rate.
#'
#' @details This function is automatically executed when using the \code{\link{prep_simulation}} function. It uses
#' the Next Generation Matrix approach to derive beta from R0.
#'
#' @examples
#'
#' #Create a spatial dataset:
#' test_data = raster(nrow=10, ncol=10, xmn=1, xmx=100000, ymn=1, ymx=100000)
#' values(test_data) = runif(100, 1, 1000)
#'
#' #Calculate distance kernel matrix and load age mixing matrix:
#' dist_mat = calc_dist_mat(test_data)
#' dist_kernel = calc_dist_kernel(dist_mat, dist_c = 87, test_data, alpha=0.95, p=6.6, p2=1.53, aa=35)
#' load_contact_mat()
#'
#' beta = calc_beta(test_data, dist_kernel, contact_mat, R0=1.8, sigma=1/2.6)
#'
#' @export
calc_beta = function(spatial_data, dist_kernel, contact_mat, R0=1.8, sigma=1/2.6){
#first time to properly calculate expanded_D:
if(class(spatial_data) == "RasterLayer"){
populated_areas = which(!is.na(spatial_data@data@values))
N = spatial_data@data@values[populated_areas]
} else if(class(spatial_data) == "SpatialPolygonsDataFrame"){
N = spatial_data@data$population
} else{
stop("Incorrect spatial dataset! The dataset must be either a RasterLayer or a SpatialPolygonsDataFrame.")
}
num_areas = dim(dist_kernel)[1] #derive number of areas from distance kernel
num_ages = dim(contact_mat)[1] #derive number of age categories from contact matrix
#!!! work in progress, only supports 4 age categories or no age categories at all right now !!!#
if(num_ages == 4){
N = matrix(N, nrow=num_areas, ncol=num_ages)
#set minimum population in an area to 1:
N[which(N<1)] = 1
NN0 = as.vector(N)
N[,1] = N[,1]*(5/81)
N[,2] = N[,2]*(14/81)
N[,3] = N[,3]*(46/81)
N[,4] = N[,4]*(16/81)
#this way, i in the matrix is the area and j the age group e.g. N[1,1] gives pop 0-4 in area 1
} else if(num_ages == 1){
N[which(N<1)] = 1
NN0 = as.vector(N)
} else {
stop("Unsupported number of age categories, currently only supports 4 or none.")
}
Sstart = matrix(N, ncol=1)
Sstart = matrix(Sstart, ncol=nrow(Sstart), nrow=nrow(Sstart))
K1 = kronecker(diag(num_ages), dist_kernel)
NNbar = matrix(N, ncol=1)
Kbar = kronecker(matrix(1,num_ages,num_ages), dist_kernel)
Mj=t(Kbar)%*%NNbar
Mj[which(Mj==0)]=1
Mjover=1/Mj
Mjover = t(Mjover)
Mjover = matrix(rep(Mjover, num_areas*num_ages), nrow=num_areas*num_ages, byrow=T)
keye = diag(num_areas)
kxeye = matrix(1, nrow=num_areas, ncol=num_areas) - keye
Cbar = kronecker(contact_mat, keye) + kronecker(contact_mat, kxeye)
### this extra bit just calculates D, necessary for FOI calculation, it's then faster to run the simulation
Ni=matrix(NN0,nrow=length(NN0),ncol=length(NN0),byrow=F)
Nj=t(Ni)
proper_D = (K1*Mjover)%*%(t(Kbar)*Cbar)
proper_D = proper_D*Nj
assign("expanded_D", proper_D, envir=.GlobalEnv)
###
#second time to calculate beta fast:
dist_kernel = matrix(1,1,1)
if(class(spatial_data) == "RasterLayer"){
populated_areas = which(!is.na(spatial_data@data@values))
N = spatial_data@data@values[populated_areas]
N = sum(N)
} else if(class(spatial_data) == "SpatialPolygonsDataFrame"){
N = spatial_data@data$population
N = sum(N)
} else{
stop("Incorrect spatial dataset! The dataset must be either a RasterLayer or a SpatialPolygonsDataFrame.")
}
num_areas = dim(dist_kernel)[1] #derive number of areas from distance kernel
num_ages = dim(contact_mat)[1] #derive number of age categories from contact matrix
#!!! work in progress, only supports 4 age categories or no age categories at all right now !!!#
if(num_ages == 4){
N = matrix(N, nrow=num_areas, ncol=num_ages)
#set minimum population in an area to 1:
N[which(N<1)] = 1
NN0 = as.vector(N)
N[,1] = N[,1]*(5/81)
N[,2] = N[,2]*(14/81)
N[,3] = N[,3]*(46/81)
N[,4] = N[,4]*(16/81)
#this way, i in the matrix is the area and j the age group e.g. N[1,1] gives pop 0-4 in area 1
} else if(num_ages == 1){
N[which(N<1)] = 1
NN0 = as.vector(N)
} else {
stop("Unsupported number of age categories, currently only supports 4 or none.")
}
Sstart = matrix(N, ncol=1)
Sstart = matrix(Sstart, ncol=nrow(Sstart), nrow=nrow(Sstart))
K1 = kronecker(diag(num_ages), dist_kernel)
NNbar = matrix(N, ncol=1)
Kbar = kronecker(matrix(1,num_ages,num_ages), dist_kernel)
Mj=t(Kbar)%*%NNbar
Mj[which(Mj==0)]=1
Mjover=1/Mj
Mjover = t(Mjover)
Mjover = matrix(rep(Mjover, num_areas*num_ages), nrow=num_areas*num_ages, byrow=T)
keye = diag(num_areas)
kxeye = matrix(1, nrow=num_areas, ncol=num_areas) - keye
Cbar = kronecker(contact_mat, keye) + kronecker(contact_mat, kxeye)
DD=(Sstart*K1*Mjover)%*%(t(Kbar)*Cbar)
X=DD/sigma
eigen_vals = eigen(X, symmetric=F, only.values = T)$values
R0a = max(Re(eigen_vals))
beta=R0/R0a
return(beta)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.