connectionDetails <- Eunomia::getEunomiaConnectionDetails()
Eunomia::createCohorts(connectionDetails)
covSet <- FeatureExtraction::createCovariateSettings(useDemographicsGender = T,
useDemographicsAge = T,
useDemographicsRace = T,
useDemographicsEthnicity = T,
useDemographicsAgeGroup = T,
useConditionGroupEraLongTerm = T,
useDrugEraStartLongTerm = T,
endDays = -1
)
databaseDetails <- createDatabaseDetails(
connectionDetails = connectionDetails,
cdmDatabaseSchema = "main",
cdmDatabaseName = "main",
cohortDatabaseSchema = "main",
cohortTable = "cohort",
outcomeDatabaseSchema = "main",
outcomeTable = "cohort",
cohortId = 1,
outcomeIds = 3, #make this ids
cdmVersion = 5)
restrictPlpDataSettings <- createRestrictPlpDataSettings(
firstExposureOnly = T,
washoutPeriod = 365
)
plpDataEunomia <- PatientLevelPrediction::getPlpData(
databaseDetails = databaseDetails,
restrictPlpDataSettings = restrictPlpDataSettings,
covariateSettings = covSet
)
plpResultEunomia <- PatientLevelPrediction::runPlp(
plpData = plpDataEunomia,
outcomeId = 3,
analysisId = 'Eunomia',
analysisName = 'Testing with Eunomia',
populationSettings = createStudyPopulationSettings(),
splitSettings = createDefaultSplitSetting(),
sampleSettings = createSampleSettings(),
featureEngineeringSettings = createFeatureEngineeringSettings(),
preprocessSettings = createPreprocessSettings(),
modelSettings = setLassoLogisticRegression(),
logSettings = createLogSettings(),
executeSettings = createDefaultExecuteSettings(),
saveDirectory = file.path(tempdir(), 'EunomiaTest')
)
plpResultEunomia9 <- PatientLevelPrediction::runPlp(
plpData = plpDataEunomia,
outcomeId = 3,
analysisId = 'Eunomia',
analysisName = 'Testing with Eunomia',
populationSettings = createStudyPopulationSettings(),
splitSettings = createDefaultSplitSetting(),
sampleSettings = createSampleSettings(),
featureEngineeringSettings = createFeatureEngineeringSettings(),
preprocessSettings = createPreprocessSettings(),
modelSettings = setKNN(),
logSettings = createLogSettings(),
executeSettings = createDefaultExecuteSettings(),
saveDirectory = file.path(tempdir(), 'EunomiaTest8')
)
plpResultEunomia8 <- PatientLevelPrediction::runPlp(
plpData = plpDataEunomia,
outcomeId = 3,
analysisId = 'Eunomia',
analysisName = 'Testing with Eunomia',
populationSettings = createStudyPopulationSettings(),
splitSettings = createDefaultSplitSetting(),
sampleSettings = createSampleSettings(),
featureEngineeringSettings = createFeatureEngineeringSettings(),
preprocessSettings = createPreprocessSettings(),
modelSettings = setSVM(),
logSettings = createLogSettings(),
executeSettings = createDefaultExecuteSettings(),
saveDirectory = file.path(tempdir(), 'EunomiaTest7')
)
plpResultEunomia7 <- PatientLevelPrediction::runPlp(
plpData = plpDataEunomia,
outcomeId = 3,
analysisId = 'Eunomia',
analysisName = 'Testing with Eunomia',
populationSettings = createStudyPopulationSettings(),
splitSettings = createDefaultSplitSetting(),
sampleSettings = createSampleSettings(),
featureEngineeringSettings = createFeatureEngineeringSettings(),
preprocessSettings = createPreprocessSettings(),
modelSettings = setRandomForest(),
logSettings = createLogSettings(),
executeSettings = createDefaultExecuteSettings(),
saveDirectory = file.path(tempdir(), 'EunomiaTest6')
)
plpResultEunomia6 <- PatientLevelPrediction::runPlp(
plpData = plpDataEunomia,
outcomeId = 3,
analysisId = 'Eunomia',
analysisName = 'Testing with Eunomia',
populationSettings = createStudyPopulationSettings(),
splitSettings = createDefaultSplitSetting(),
sampleSettings = createSampleSettings(),
featureEngineeringSettings = createFeatureEngineeringSettings(),
preprocessSettings = createPreprocessSettings(),
modelSettings = setMLP(),
logSettings = createLogSettings(),
executeSettings = createDefaultExecuteSettings(),
saveDirectory = file.path(tempdir(), 'EunomiaTest5')
)
plpResultEunomia5 <- PatientLevelPrediction::runPlp(
plpData = plpDataEunomia,
outcomeId = 3,
analysisId = 'Eunomia',
analysisName = 'Testing with Eunomia',
populationSettings = createStudyPopulationSettings(),
splitSettings = createDefaultSplitSetting(),
sampleSettings = createSampleSettings(),
featureEngineeringSettings = createFeatureEngineeringSettings(),
preprocessSettings = createPreprocessSettings(),
modelSettings = setNaiveBayes(),
logSettings = createLogSettings(),
executeSettings = createDefaultExecuteSettings(),
saveDirectory = file.path(tempdir(), 'EunomiaTest4')
)
plpResultEunomia3 <- PatientLevelPrediction::runPlp(
plpData = plpDataEunomia,
outcomeId = 3,
analysisId = 'Eunomia',
analysisName = 'Testing with Eunomia',
populationSettings = createStudyPopulationSettings(),
splitSettings = createDefaultSplitSetting(),
sampleSettings = createSampleSettings(),
featureEngineeringSettings = createFeatureEngineeringSettings(),
preprocessSettings = createPreprocessSettings(),
modelSettings = setAdaBoost(),
logSettings = createLogSettings(),
executeSettings = createDefaultExecuteSettings(),
saveDirectory = file.path(tempdir(), 'EunomiaTest2')
)
plpResultEunomia4 <- PatientLevelPrediction::runPlp(
plpData = plpDataEunomia,
outcomeId = 3,
analysisId = 'Eunomia',
analysisName = 'Testing with Eunomia',
populationSettings = createStudyPopulationSettings(),
splitSettings = createDefaultSplitSetting(),
sampleSettings = createSampleSettings(),
featureEngineeringSettings = createFeatureEngineeringSettings(),
preprocessSettings = createPreprocessSettings(),
modelSettings = setDecisionTree(maxFeatures = list(50,'auto', NULL)),
logSettings = createLogSettings(),
executeSettings = createDefaultExecuteSettings(),
saveDirectory = file.path(tempdir(), 'EunomiaTest3')
)
plpResultEunomia2 <- PatientLevelPrediction::runPlp(
plpData = plpDataEunomia,
outcomeId = 3,
analysisId = 'Eunomia',
analysisName = 'Testing with Eunomia',
populationSettings = createStudyPopulationSettings(),
splitSettings = createDefaultSplitSetting(),
sampleSettings = createSampleSettings(),
featureEngineeringSettings = createFeatureEngineeringSettings(),
preprocessSettings = createPreprocessSettings(),
modelSettings = setGradientBoostingMachine(
ntrees = c(500),
nthread = c(10),
earlyStopRound = c(25),
maxDepth = c(4),
minRows = c(5),
learnRate = c(0.2)
),
logSettings = createLogSettings(),
executeSettings = createDefaultExecuteSettings(),
saveDirectory = file.path(tempdir(), 'EunomiaTest')
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.