source('helper_functions.r')
message_parallel <- function(...){
system(sprintf('echo "\n%s\n"', paste0(..., collapse="")))
}
N <- 2e6 # hopefully only thing that needs to be touched
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Set up ####
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SEED <- 45
RNGkind("L'Ecuyer-CMRG")
set.seed(SEED)
CORES_1 <- 4
CORES_2 <- sqrt(CORES_1)
if(! isWhole(CORES_2)) {
stop('sqrt(CORES_1) must be an integer')
}
REP <- 25*CORES_1
targ_runLen <- N/2
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Auxiliary functions ####
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
run_len_calculator <- function (score, thres) {
cp <- which(score >= thres)[1]
ifelse(is.na(cp), length(score), cp)
}
fn_thre_cand <- function(avg_run_len, thre_seq, target) {
thre_seq[which(avg_run_len > target)[1]]
}
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Simulation ####
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t0 <- Sys.time()
S_noise <- mclapply(1:REP, function (i) matrix(cumsum(c(0, rnorm(N))), nrow = 1), mc.cores = CORES_1)
cat('S_noise done. '); print(Sys.time() - t0);
t0 <- Sys.time()
AOS_run <- mclapply(X = S_noise,
FUN =
function(x) {
res <- scoresAOS(x)
message_parallel('.')
return(res)
}, #cpp function
mc.cores = CORES_1
)
cat('AOS_run done. '); print(Sys.time() - t0)
thre_seq <- seq(2, 7, by = .01)
avg_run_len <- rep(NA, length(thre_seq))
t0 <- Sys.time()
avg_run_len <-
mclapply(seq_along(thre_seq),
function(i) {
mclapply(AOS_run, run_len_calculator,
thres = thre_seq[i],
mc.cores = CORES_2) %>%
unlist %>%
mean
},
mc.cores = CORES_2
) %>% unlist
cat('avg_run_len done. '); print(Sys.time() - t0); cat('\n')
threAOS <- fn_thre_cand(avg_run_len, thre_seq, targ_runLen)
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# results / plots ####
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cat('threAOS:', threAOS, '\n')
cat('CORES_1:', CORES_1, '\n')
cat('N:', N, '\n')
mat <- cbind(thre_seq, avg_run_len)
colnames(mat) <- c('threshold', 'avg_run_len')
plot(
x = mat,
type = 'l',
main = paste('N:', N, '| Target run length:', targ_runLen, '| REP:', REP)
)
abline(v = threAOS)
text(threAOS, 1, paste0('AOS threshold: ', threAOS))
#
#
# ##################################
# source('helper_functions.r')
#
# N <- 2e2 # hopefully only thing that needs to be touched
# targ_runLen <- N/2
#
# REP <- 100
#
#
# # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# # Auxiliary functions ####
# # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# run_len_calculator <- function (score, thres) {
# cp <- which(score >= thres)[1]
# ifelse(is.na(cp), length(score), cp)
# }
#
# fn_thre_cand <- function(avg_run_len, thre_seq, target) {
# thre_seq[which(avg_run_len > target)[1]]
# }
#
# # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# # Simulation ####
# # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#
# t0 <- Sys.time()
# S_noise <- lapply(1:REP, function (i) matrix(cumsum(c(0, rnorm(N))), nrow = 1))
# cat('S_noise done. '); print(Sys.time() - t0);
#
# t0 <- Sys.time()
# AOS_run <-
# lapply(
# X = S_noise,
# FUN = function(x){
# res <- scoresAOS(x)
# cat('.')
# return(res)
# }
# )
# cat('\n')
# cat('AOS_run done. '); print(Sys.time() - t0)
#
# thre_seq <- seq(2, 3, by = .01)
# avg_run_len <- rep(NA, length(thre_seq))
#
# t0 <- Sys.time()
# avg_run_len <-
# lapply(seq_along(thre_seq),
# function(i) {
# lapply(AOS_run, run_len_calculator,thres = thre_seq[i]) %>% unlist %>% mean
# }) %>% unlist
#
# cat('avg_run_len done. '); print(Sys.time() - t0); cat('\n')
#
# threAOS <- fn_thre_cand(avg_run_len, thre_seq, targ_runLen)
#
# # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# # results / plots ####
# # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# cat('threAOS:', threAOS, '\n')
# cat('N:', N, '\n')
#
#
# mat <- cbind(thre_seq, avg_run_len)
# colnames(mat) <- c('threshold', 'avg_run_len')
#
# plot(
# x = mat,
# type = 'l',
# main = paste('N:', N, '| Target run length:', targ_runLen, '| REP:', REP)
# )
# abline(v = threAOS)
# text(threAOS, 1, paste0('AOS threshold: ', threAOS))
#
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.