#' Reorder candidate predictors character vector
#' @description reorder_cndt_predrs_chr() is a Reorder function that reorders an object to conform to a pre-specified schema. Specifically, this function implements an algorithm to reorder candidate predictors character vector. The function is called for its side effects and does not return a value.
#' @param candidate_predrs_chr Candidate predictors (a character vector)
#' @param data_tb Data (a tibble)
#' @param depnt_var_nm_1L_chr Dependent variable name (a character vector of length one), Default: 'utl_total_w'
#' @param method_1L_chr Method (a character vector of length one), Default: 'pearson'
#' @return Reordered candidate (predictors)
#' @rdname reorder_cndt_predrs_chr
#' @export
#' @importFrom dplyr select all_of mutate across arrange desc filter pull
#' @importFrom Hmisc rcorr
#' @importFrom tibble as_tibble
#' @importFrom rlang sym
reorder_cndt_predrs_chr <- function (candidate_predrs_chr, data_tb, depnt_var_nm_1L_chr = "utl_total_w",
method_1L_chr = "pearson")
{
data_mat <- as.matrix(data_tb %>% dplyr::select(c(dplyr::all_of(depnt_var_nm_1L_chr),
dplyr::all_of(candidate_predrs_chr))))
corr_ls <- Hmisc::rcorr(data_mat, type = method_1L_chr)
reordered_cndt_predrs <- corr_ls$r %>% tibble::as_tibble(rownames = "var_nms_chr") %>%
dplyr::mutate(dplyr::across(where(is.numeric), abs)) %>%
dplyr::arrange(dplyr::desc(!!rlang::sym(depnt_var_nm_1L_chr))) %>%
dplyr::filter(var_nms_chr != depnt_var_nm_1L_chr) %>%
dplyr::pull(var_nms_chr) %>% as.vector()
return(reordered_cndt_predrs)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.