estimate_qra_optimized: Estimate qra parameters by optimizing weighted interval score...

View source: R/qra_fit.R

estimate_qra_optimizedR Documentation

Estimate qra parameters by optimizing weighted interval score loss

Description

Estimate qra parameters by optimizing weighted interval score loss

Usage

estimate_qra_optimized(
  qfm_train,
  y_train,
  quantile_groups,
  qra_model = c("convex_per_model", "unconstrained_per_model",
    "rescaled_convex_per_model", "rel_wis_weighted_median"),
  backend = c("optim", "NlcOptim", "grid_search"),
  max_weight = NULL
)

Arguments

qfm_train

QuantileForecastMatrix with training set predictions from component models

y_train

numeric vector of responses for training set

quantile_groups

Vector of group labels for quantiles, having the same length as the number of quantiles. Common labels indicate that the ensemble weights for the corresponding quantile levels should be tied together. Default is rep(1,length(quantiles)), which means that a common set of ensemble weights should be used across all levels. This is the argument tau_groups for quantgen::quantile_ensemble, and may only be supplied if ⁠backend = 'quantgen⁠

qra_model

quantile averaging model

backend

implementation used for estimation; currently either 'optim', using L-BFGS-B as provided by the optim function in R, or 'NlcOptim', using NlcOptim::solnl, or 'grid_search', using covidEnsemble::grid_search

max_weight

numeric value for maximum weight. Ignored unless qra_model is rel_wis_weighted_median or rel_wis_weighted mean and backend is grid_search

Value

object of class qra_fit


reichlab/covidEnsembles documentation built on Jan. 31, 2024, 7:21 p.m.