context("tm_bias")
skip_on_cran()
set.seed(4077)
B_test_dat <- as.data.frame(cbind(c(rep(0,500),rep(1,500)),
c(sort(rnorm(500,0,1)),sort(rnorm(500,1,1.5)))))
colnames(B_test_dat) <- c("TR", "Y")
B_test_dat$Y[which(B_test_dat$TR==0)[1:150]] <- NA
B_test_dat$Y[which(B_test_dat$TR==1)[sample(seq(1,400),
200, replace=FALSE)]] <- NA
B_test_dat2 <- B_test_dat; B_test_dat2$Y[1:10] <- "Oops"
B_test_dat3 <- B_test_dat; B_test_dat3$TR[1:10] <- 3
# checking total bias
expect_equal(round(as.numeric(tm_bias(formula= Y ~ TR, "TR", trF=0.5,
side="LOW", spread_TG=0.4,
spread_CG=0.8, data=B_test_dat)$total_bias),4),
round(1.634035,4))
# checking TM estimate
expect_equal(round(as.numeric(tm_bias(formula= Y ~ TR, "TR", trF=0.5,
side="LOW", spread_TG=0.4,
spread_CG=0.8, data=B_test_dat)$TM_estimate),4),
round(1.204756,4))
# checking total bias under maximal violation of strong MNAR assumption in CG group
expect_equal(round(as.numeric(tm_bias(formula= Y ~ TR, "TR", trF=0.5,
side="LOW", spread_TG=0.4,
spread_CG=0.8, data=B_test_dat)$max_bias_CG[4]),4),
round(-0.7331188,4))
# checking errors
expect_error(tm_bias(formula= Y ~ TR, "Trt", trF=0.5,
side="LOW", spread_TG=0.4,
spread_CG=0.8, data=B_test_dat),
"TR variable not in data")
expect_error(tm_bias(formula= Y ~ TR, "TR", trF=0.5,
side="LOW", spread_TG=0.4,
spread_CG=0.8, data=B_test_dat2),
"Y non-numeric")
expect_error(tm_bias(formula= Y ~ TR, "TR", trF=0.5,
side="LOW", spread_TG=0.4,
spread_CG=0.8, data=B_test_dat3),
"TR non-binary")
expect_error(tm_bias(formula= Y ~ TR, "TR", trF=0.5,
side="LOW", spread_TG=0.4,
spread_CG=0.2, data=B_test_dat),
"Comparator Gr spread smaller than dropout proportion")
expect_error(tm_bias(formula= Y ~ TR, "TR", trF=0.5,
side="LOW", spread_TG=0.1,
spread_CG=0.8, data=B_test_dat),
"Treatment Gr spread smaller than dropout proportion")
expect_error(tm_bias(formula= Y ~ TR, "TR", trF=0.35,
side="LOW", spread_TG=0.4,
spread_CG=0.3, data=B_test_dat),
"Trimming fraction smaller than largest dropout proportion")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.