getFev1DataFrame = function(fev1_0, fev1_avg, vari, years){
fev1_avg = c(fev1_0, fev1_avg)
vari = c(0,vari)
fev1_up = fev1_avg + confidenceInterval*sqrt(vari)
fev1_low = fev1_avg - confidenceInterval*sqrt(vari)
df = data.frame(years, fev1_avg, vari, fev1_low, fev1_up)
names(df) = c("Year", "FEV1", "vari", "FEV1_lower", "FEV1_upper")
return(df)
}
getAA1 = function(fev1DataFrame, fev1_0) {
cv1 = sqrt(fev1DataFrame$vari[2:12]) / (fev1DataFrame$FEV1[2:12]-fev1_0)
aa1 = rbind(fev1DataFrame$FEV1[2:12],
fev1DataFrame$fev1_up[2:12],
fev1DataFrame$fev1_low[2:12],
round(abs(cv1)*100, 0))
return(aa1)
}
getBB1 = function(fev1DataFrame, fev1_0) {
n_mean1 = (fev1DataFrame$FEV1[12]-fev1_0)/timeHorizon*1000
n_sd1 = ((fev1DataFrame$FEV1[12]-fev1_0)/timeHorizon -
(fev1DataFrame$fev1_low[12]-fev1_0)/timeHorizon)/confidenceInterval*1000
bb1 = data.frame(round(pnorm(-40, n_mean1, n_sd1)*100, 0))
return(bb1)
}
calculateSigmaMatrices = function(constants, t1, vari){
v_t_f<- constants$v_0 + t1^2*constants$v_t + 2*t1*constants$cov1
v_t_0<- constants$v_0 + constants$v_e
cov_f_0<- constants$v_0 + t1*constants$cov1
cov_mat<- rbind(c(v_t_f,cov_f_0),c(cov_f_0,v_t_0))
sigma_11<-as.matrix(cov_mat[1,1])
sigma_12<-as.matrix(t(cov_mat[1,-1]))
sigma_21<-as.matrix(cov_mat[-1,1])
sigma_22<-as.matrix(cov_mat[-1,-1])
sigmaMatrices = list(sigma_11 = sigma_11,
sigma_12 = sigma_12,
sigma_21 = sigma_21,
sigma_22 = sigma_22)
return(sigmaMatrices)
}
calculateAverage = function(vari, unconditional_mu, obs, sigmaMatrices){
average = unconditional_mu[1] +
sigmaMatrices$sigma_12%*%solve(sigmaMatrices$sigma_22)%*%(obs-unconditional_mu[-1])
return(average)
}
calculateVariance = function(sigmaMatrices) {
variance = sigmaMatrices$sigma_11 -
sigmaMatrices$sigma_12%*%solve(sigmaMatrices$sigma_22)%*%sigmaMatrices$sigma_21
return(variance)
}
calculateUnconditionalMu = function(constants, beta_x, beta_t_x, t1, beta_x_p){
unconditional_mu <- c(
mu_f = constants$beta_0 +
beta_x +
beta_t_x +
constants$beta_t*t1 +
constants$beta_t2*t1*t1,
mu_0 = constants$beta_0 + beta_x_p
)
return(unconditional_mu)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.