#' Predict counts of one or more proteins and one haplotype
#'
#' Predict the number of binders and the number of binders
#' that overlap with at least one amino acid with a TMH
#' for one or more proteins.
#'
#' Use \link{predict_counts} to predict these
#' counts for one protein.
#' @inheritParams default_params_doc
#' @return a tibble with
#' \enumerate{
#' \item n_binders number of epitopes that bind
#' \item n_binders_tmh number of epitopes that bind and have one
#' amino acid overlapping with a TMH
#' \item n_spots number of spots for the n-mer
#' \item n_spots_tmh number of spots that have one
#' amino acid overlapping with a TMH
#' }
#' The number of will equal the number of proteins.
#' @author Richèl J.C. Bilderbeek
#' @examples
#' library(mhcnuggetsr)
#' library(pureseqtmr)
#'
#' if (is_pureseqtm_installed()) {
#'
#' protein_sequences <- c(
#' "SWINGTRANSMITWILLINGFASCINATEARISERISKGRATE",
#' "FANTASTICALLYFAMILYVW"
#' )
#'
#' predict_counts_per_proteome(
#' protein_sequences = protein_sequences,
#' haplotype = get_mhc1_haplotypes()[1],
#' peptide_length = 9,
#' percentile = 0.123,
#' ic50_prediction_tool = "EpitopePrediction"
#' )
#' }
#' @export
predict_counts_per_proteome <- function(
protein_sequences,
haplotype,
peptide_length,
percentile,
verbose = FALSE,
ic50_prediction_tool
) {
tibbles <- list()
for (i in seq_along(protein_sequences)) {
tibbles[[i]] <- bbbq::predict_counts(
protein_sequence = protein_sequences[i],
haplotype = haplotype,
peptide_length = peptide_length,
percentile = percentile,
verbose = verbose,
ic50_prediction_tool = ic50_prediction_tool
)
}
dplyr::bind_rows(tibbles)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.