#' Create 'figure_posterior_distributions_crown_age'
#' @param posterior_crown_ages posterior crown ages, as returned from read_collected_pstr_crown_ages
#' @param filename name of the file the figure will be saved to
#' @export
create_figure_posterior_crown_ages <- function(
posterior_crown_ages,
filename
) {
ggplot2::ggplot(
data = posterior_crown_ages,
ggplot2::aes(x = crown_age)
) + ggplot2::geom_histogram(na.rm = TRUE, binwidth = 0.1) +
ggplot2::xlab("tree crown_age") +
ggplot2::ylab("Count") +
ggplot2::geom_hline(yintercept = 100, linetype = "dotted") +
ggplot2::geom_vline(xintercept = 0.2, linetype = "dotted") +
ggplot2::labs(
title = "The distribution of tree crown ages",
caption = filename
) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5))
# svg("~/figure_posterior_distribution_crown_ages_low_count.svg")
# ggplot2::ggplot(
# data = posterior_crown_ages,
# ggplot2::aes(x = crown_age)
# ) + ggplot2::geom_histogram(na.rm = TRUE, binwidth = 0.1) +
# ggplot2::coord_cartesian(ylim = c(0, 100)) +
# ggplot2::xlab("tree crown_age") +
# ggplot2::ylab("Count") +
# ggplot2::geom_hline(yintercept = 100, linetype = "dotted") +
# ggplot2::labs(
# title = "The distribution of tree crown_ages",
# caption = "figure_posterior_distribution_crown_ages_low_count"
# ) +
# ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5))
# dev.off()
# svg("~/figure_posterior_distribution_crown_ages_high_count.svg")
# ggplot2::ggplot(
# data = posterior_crown_ages,
# ggplot2::aes(x = crown_age)
# ) + ggplot2::geom_histogram(na.rm = TRUE, binwidth = 0.001) +
# ggplot2::xlim(0.1, 0.2) +
# ggplot2::xlab("tree crown_age") +
# ggplot2::ylab("Count") +
# ggplot2::geom_vline(xintercept = 0.2, linetype = "dotted") +
# ggplot2::labs(
# title = "The distribution of tree crown_ages",
# caption = "figure_posterior_distribution_crown_ages_high_count"
# ) +
# ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5))
#
#
# print("Determine sample size")
# n_sampled <- 500000
# print(paste0("Using a sample of ", n_sampled, " of ", nrow(posterior_crown_ages), " observations"))
#
# print("Sample some of the crown_ages")
# set.seed(42)
# some_posterior_crown_ages <- dplyr::sample_n(posterior_crown_ages, size = n_sampled)
# head(some_posterior_crown_ages)
#
# print("Split posterior crown_ages per posterior index")
# testit::assert("pi" %in% names(posterior_crown_ages))
# `%>%` <- dplyr::`%>%`
# df <- tidyr::spread(some_posterior_crown_ages, pi, crown_age)
# %>% dplyr::rename(pi1 = "1", pi2 = "2")
#
# print("Remove NA column")
# df <- dplyr::select(df, -starts_with("<NA>"))
# testit::assert(names(df) == c("filename", "sti", "ai", "si", "pi1", "pi2"))
#
# print("Remove NAs")
# df <- stats::na.omit(df)
# nrow(df)
#
# print("Group")
# df <- dplyr::group_by(.data = df, filename, sti, ai)
#
# safe_mann_whitney <- function(pi1, pi2)
# {
# p <- NA
# tryCatch(
# p <- stats::wilcox.test(
# pi1,
# pi2,
# correct = FALSE,
# exact = FALSE, # cannot compute exact p-value with ties
# na.action = stats::na.omit
# )$p.value,
# error = function(cond) {} # nolint
# )
# p
# }
#
# df <- df %>% summarize(p_value = safe_mann_whitney(pi1, pi2))
#
# head(df)
# names(df)
#
# svg("~/figure_posterior_distribution_crown_ages_p_values.svg")
# ggplot2::ggplot(
# stats::na.omit(df),
# ggplot2::aes(x = p_value, na.omit = TRUE)
# ) +
# ggplot2::geom_histogram(binwidth = 0.01) +
# ggplot2::geom_vline(xintercept = 0.05, linetype = "dotted") +
# ggplot2::xlab("p value") +
# ggplot2::ylab("Count") +
# ggplot2::labs(
# title = "The distribution of p values of Mann-Whitney tests\nbetween posterior crown ages",
# caption = "figure_posterior_distribution_crown_ages_p_values"
# ) +
# ggplot2::annotate("text", x = c(0.0, 0.125), y = 1450, label = c("different", "same")) +
# ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5))
# dev.off()
#
#
#
#
#
#
#
#
#
#
#
#
# # Show posterior with low, median and high p value
# low <- df[which(df$p_value == min( df$p_value)), ]
# low_filename <- paste0(posteriors_path, "/", low$filename[1])
# low_sti <- as.numeric(low$sti[1])
# low_ai <- as.numeric(low$ai[1])
# low_file <- wiritttes::read_file(low_filename)
# low_crown_ages1 <- wiritttes::get_posterior(low_file, sti = low_sti, ai = low_ai, pi = 1)$estimates$TreeHeight
# low_crown_ages2 <- wiritttes::get_posterior(low_file, sti = low_sti, ai = low_ai, pi = 2)$estimates$TreeHeight
# df_low <- data.frame(
# pi = as.factor(c(rep(1, length(low_crown_ages1)), rep(2, length(low_crown_ages2)))),
# crown_age = c(low_crown_ages1, low_crown_ages2)
# )
#
# svg("~/figure_posterior_distribution_crown_ages_lowest_p_value.svg")
# options(warn = 1) # Allow outliers not to be plotted
# ggplot2::ggplot(
# stats::na.omit(df_low),
# ggplot2::aes(x = crown_age, fill = pi)
# ) +
# ggplot2::geom_histogram(binwidth = 0.001, position = "identity", alpha = 0.25) +
# ggplot2::xlab("tree crown_age") +
# ggplot2::ylab("Count") +
# ggplot2::xlim(0.14,0.17) +
# ggplot2::labs(
# title = "The distribution of tree crown_ages of two replicate posteriors",
# caption = paste0("p value = ", low$p_value, ", figure_posterior_distribution_crown_ages_lowest_p_value")
# ) +
# ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5))
# options(warn = 2) # Be strict
# dev.off()
#
#
#
#
#
#
# high <- df[which(df$p_value == max( df$p_value)), ]
#
# high_filename <- paste0(posteriors_path, "/", high$filename[1])
# high_sti <- as.numeric(high$sti[1])
# high_ai <- as.numeric(high$ai[1])
# high_file <- wiritttes::read_file(high_filename)
# high_crown_ages1 <- wiritttes::get_posterior(high_file, sti = high_sti, ai = high_ai, pi = 1)$estimates$TreeHeight
# high_crown_ages2 <- wiritttes::get_posterior(high_file, sti = high_sti, ai = high_ai, pi = 2)$estimates$TreeHeight
# df_high <- data.frame(
# pi = as.factor(c(rep(1, length(high_crown_ages1)), rep(2, length(high_crown_ages2)))),
# crown_age = c(high_crown_ages1, high_crown_ages2)
# )
#
# svg("~/figure_posterior_distribution_crown_ages_highest_p_value.svg")
# options(warn = 1) # Allow outliers not to be plotted
# ggplot2::ggplot(
# stats::na.omit(df_high),
# ggplot2::aes(x = crown_age, fill = pi)
# ) +
# ggplot2::geom_histogram(binwidth = 0.001, position = "identity", alpha = 0.25) +
# ggplot2::xlab("tree crown_age") +
# ggplot2::ylab("Count") +
# ggplot2::xlim(0.14, 0.16) +
# ggplot2::labs(
# title = "The distribution of tree crown_ages of two replicate posteriors",
# caption = paste0("p value = ", high$p_value, ", figure_posterior_distribution_crown_ages_highest_p_value")
# ) +
# ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5))
# options(warn = 2) # Be strict
ggplot2::ggsave(file = filename, width = 7, height = 7)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.