scratch/ajr_sandbox.R

library(roleR)

p <- roleParams(individuals_local = 100, individuals_meta = 10000,
                species_meta = 10, speciation_local = 0, 
                speciation_meta = 0.05, extinction_meta = 0.05, env_sigma = 0.5,
                trait_sigma=1, comp_sigma = 0.5, dispersal_prob = 0.01, mutation_rate = 1e-6,
                equilib_escape = 1, num_basepairs = 500, alpha = 10000,
                init_type = 'bridge_island', niter = 1000, niterTimestep = 100)

model <- runRole(roleModel(p))


J <- c(rep(500, 250), 100 * exp(0.007 * 0:249))

plot(J)


neutp <- untbParams(individuals_local = J, 
                    individuals_meta = 1000, species_meta = 100, 
                    speciation = 0.01, dispersal_prob = 0.2, 
                    init_type = 'oceanic_island', 
                    niter = 500, niterTimestep = 10)



bott <- roleModel(neutp)
bott <- iterModel(bott)

plot(getSumStats(bott, list(rich = richness))[, 1])


manyNeutral <- replicate(100, neutp)

m <- roleExperiment(manyNeutral)
m <- iterExperiment(m)


# set-up priors

# sample from priors

# run experiment over those samples

# proceed as normal 



neut <- roleModel(neutp)
foo <- as(iterModel(neut), 'roleExperiment')
foo@experimentMeta

getSumStats(foo, list(rich = richness))


p <- roleParams(individuals_local = 100, 
                individuals_meta = 1000, species_meta = 100, 
                speciation_local = 0.01, dispersal_prob = 0.2, 
                init_type = 'oceanic_island', 
                neut_delta = 1, # this *always* needs to be equal to 1 for neutral model
                niter = 1000)
m <- roleModel(p)
m <- iterModel(m)




p <- roleParams(individuals_local = 100, individuals_meta = 100000, 
                species_meta = 50, speciation_local = 0.00075, speciation_meta = NULL, 
                extinction_meta = 0.05, trait_sigma = 1, env_sigma = 1, 
                comp_sigma = 1, dispersal_prob = 0.1, mutation_rate = 0.01, 
                equilib_escape = 1, alpha = 1000, num_basepairs = 500, 
                init_type = 'oceanic_island', 
                niter = 1000, neut_delta = 1)






m <- roleModel(p)

# m@modelSteps[[1]]@localComm@indSpecies <- rep(3, 100)
# m@modelSteps[[1]]@localComm@spAbund[c(1, 3)] <- c(0, 100)

foo <- iterModel(m)


ex <- as(foo, 'roleExperiment')
class(ex@modelRuns[[1]])


getSumStats(ex, list(rich = richness, hillAbund = hillAbund))



tre <- as(foo@modelSteps[[6]]@phylo, 'phylo')
plot(tre)

rawAbundance(foo@modelSteps[[2]])
foo@modelSteps[[1]]@metaComm

foo@modelSteps[[1]]@localComm@indSpecies



# ----
bla <- model@modelSteps[[1]]@localComm@indSpecies
bla


model@modelSteps[[1]]@localComm@indSpecies
role-model/roleR documentation built on April 3, 2025, 1:06 p.m.