library("devtools")
library("InequalityEnvironment")
library("tidyverse")
library("GGally")
library("plotly")
library("here")
library("rnaturalearth")
library("rnaturalearthdata")
library("rgeos")
library("cowplot")
library("biscale")
library("sf")
# functions----
formatter <- function(string){
string%>%
str_replace_all("_", " ")%>%
str_to_title()
}
biscale_choro <- function(){
data <- bi_class(ave_data, x = log_gdp_per_cap, y = epi, style = "quantile", dim = 3)
map <- ggplot(mapping=aes(label=country)) +
geom_sf(data = data, mapping = aes(geometry=geometry,fill = bi_class), size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "DkBlue", dim = 3) +
bi_theme()
legend <- bi_legend(pal = "DkBlue",
dim = 3,
xlab = "Higher log(GDP/capita)",
ylab = "Higher EPI score",
size = 12)
finalPlot <- ggdraw() +
draw_plot(map, 0, 0, 1, 1) +
draw_plot(legend, 0, 0, 0.3, 0.3)
return(finalPlot)
}
ave_data <- epi_data%>%
group_by(iso,country,country_name)%>%
summarise(across(.cols=everything(),mean,na.rm=TRUE),
nobs=n())
world <- ne_countries(scale = "medium", returnclass = "sf")%>%
select(iso_a3,geounit,geometry)
ave_data <- left_join(ave_data,world,by=c("iso"="iso_a3"))%>%
ungroup()
rownames(ave_data) <- ave_data$country
epi_vs_year <- ggplot(epi_data,aes(year,epi,group=country,colour=log_gdp_per_cap))+
geom_line()+
scale_colour_viridis_c()
wealth_vs_epi <- biscale_choro()
mydf <- epi_data%>%
mutate(year=factor(year))
rownames(mydf) <- paste(mydf$country, mydf$year, sep=":")
# control variables pairs plots----
(controls_pairs <- ave_data%>%
select(control_of_corruption,
rule_of_law,
political_stability_no_violence,
voice_and_accountability,
government_effectiveness,
regulatory_quality,
log_gdp_per_cap)%>%
ggpairs(lower = list(continuous = wrap(ggally_points, size=.5, alpha = .5)),
labeller = as_labeller(formatter))+
labs(title="Different measures of basically the same thing.",
caption="Source: https://info.worldbank.org/governance/wgi/ and https://data.worldbank.org/indicator/NY.GDP.PCAP.CD"))
# inequity variables pairs plots----
(inequality_pairs <- ave_data%>%
select(gini_disp, log_num_poverty, top_ten_share, bottom_fifty_share)%>%
ggpairs(lower = list(continuous = wrap(ggally_points, size=.5, alpha = .5)),
labeller = as_labeller(formatter))+
labs(title="Different measures of subtly different things.",
caption="Source: https://wid.world/data/ and https://dataverse.harvard.edu/file.xhtml?fileId=4149926&version=5.0"))
# EPI vs. import weighted EPI----
(epi_vs_wepi <- ave_data%>%
ggplot()+
geom_abline(slope=1, intercept=0, col="white", lwd=2)+
scale_colour_viridis_c()+
geom_point(aes(epi, weighted_epi, colour=log_gdp_per_cap, label=country))+
labs(x="Environmental Performance Index",
y="Import weighted EPI",
caption="source:https://sedac.ciesin.columbia.edu/data/collection/epi/sets/browse and https://wits.worldbank.org/datadownload.aspx?lang=en"))
(epi_vs_wepi <- ggplotly(epi_vs_wepi, tooltip = c("label"))%>%
config(displayModeBar = F))
# regressions----
dep_vars <- c("epi~", "weighted_epi~")
controls <- "control_of_corruption+rule_of_law+political_stability_no_violence+voice_and_accountability+government_effectiveness+regulatory_quality+log_gdp_per_cap"
inequality <- c("+gini_disp", "+log_num_poverty", "+top_ten_share", "+bottom_fifty_share")
regressions <- crossing(dep_vars, controls, inequality)%>%
mutate(call=paste0(dep_vars, controls, inequality),
mod=map(.x=call, .f=lm, data=ave_data),
rob_mod=map(mod,lmtest::coeftest,vcov=sandwich::vcovHC)
)
# 32 indicator's time series----
(yearly_indicator_diff <- ggplot(indicator_series, aes(year, change, group=iso))+
theme(text = element_text(size = 8))+
geom_line(alpha=.05)+
facet_wrap(vars(series), scales="free_y")+
labs(title="Some performance indicators constant over time for all countries???",
caption="source: https://sedac.ciesin.columbia.edu/downloads/data/epi/epi-environmental-performance-index-2020/",
y="annual difference in indicator")+
theme(axis.text.x = element_text(angle=45)))
# inequality vs. working hours (rat race)----
(rr <- ggplot(filter(rat_race, year>1979), aes(gini_disp, hours, frame=year))+
geom_text(aes(label=country_name))+
geom_smooth(method="lm")+
scale_colour_viridis_c()+
labs(x="Gini coefficient for disposable income",
y="Average annual hours of work"))
# gini variation----
(gini_plot <- ggplot(epi_data , aes(year, gini_disp, group=country, colour=log_gdp_per_cap, label=country))+
scale_color_viridis_c()+
geom_line()+
labs(y="Gini coefficient for disposable income",
colour="log(GDP/capita)"))
kuznet <-ggplot(ave_data,aes(log_gdp_per_cap,epi,label=iso))+
geom_text()+
geom_smooth(se=FALSE)+
labs(title="the solution to pollution is economic growth?",
x="Log (GDP/capita)",
y="Environmental Performance Index")
#save all objects----
use_data(controls_pairs, overwrite = TRUE)
use_data(epi_vs_wepi, overwrite = TRUE)
use_data(epi_vs_year, overwrite = TRUE)
use_data(gini_plot, overwrite = TRUE)
use_data(inequality_pairs, overwrite = TRUE)
use_data(kuznet, overwrite = TRUE)
use_data(regressions, overwrite = TRUE)
use_data(rr, overwrite = TRUE)
use_data(wealth_vs_epi, overwrite = TRUE)
use_data(world, overwrite = TRUE)
use_data(yearly_indicator_diff, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.