Description Usage Arguments Details Value Examples
View source: R/dim_reduction.R
Dimensionality reduction using PCA.
1 2 3 4 5 6 7 8 9 10 |
experiment |
TSRexploreR object. |
samples |
A vector of sample names to analyze. |
data_type |
Whether to analyze TSSs ('tss') or TSRs ('tsr'). |
use_normalized |
Whether to use the normalized (TRUE) or raw (FALSE) counts. |
remove_var |
Remove features in this bottom fraction. |
center |
Center the data (TRUE). |
scale |
Scale the data (TRUE). |
... |
Additional arguments passed to PCAtools::biplot. |
This function will generatete a PCA plot of the first two PCs. This helps to visualize the relative similarity of samples based on the most variable features.
'remove_var' removes features in the bottom fraction of variance. 'center' and 'scale' will center and scale the data, respectively.
ggplot2 object of PCA plot.
1 2 3 4 5 6 7 8 9 10 11 12 13 | data(TSSs)
samples <- data.frame(
sample_name=sprintf("S288C_D_%s", seq_len(2)),
file_1=NA, file_2=NA,
condition="Diamide"
)
exp <- TSSs[seq_len(2)] %>%
tsr_explorer(sample_sheet=samples) %>%
format_counts(data_type="tss") %>%
normalize_counts(method="CPM")
p <- plot_reduction(exp, data_type="tss")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.