#' Calculates Effective Sample Sizes and weights
#'
#' AMIS.
#'
#' @param prev Matrix with observed prevalences
#' @param sim Vector of simulated prevalences
#' @param w1 Weight matrix 1
#' @param delta Threshold value to compare similarity between prevalences
#' @return Vector with ESS and weight mnatrix
#' @author Renata Retkute, \email{r.retkute@@yahoo.com}
#' @export
#'
calculate_ESS<-function(prev, sim, w1, delta){
n.pixels<-nrow(prev)
n.param<-length(sim)
WW.cnt<-matrix(0, nrow=n.pixels, ncol=n.param)
g<-rep(0, n.param)
for(j in 1:n.param){
x1<-H(delta/2-abs(prev-sim[j]))
x2<-matrix(x1, ncol=ncol(prev), nrow=nrow(prev))
x3<-rowSums(x2)
WW.cnt[,j]<-x3
g[j]<-sum(w1[which(abs(sim-sim[j])<=delta/2)])/sum(w1)
}
ess<-c()
WW<-matrix(0, nrow=n.pixels, ncol=n.param)
for(i in 1:n.pixels){
f<-WW.cnt[i,]
ww<-w1*(f/g)
if(sum(ww) >0)
ww<-ww/sum(ww)
WW[i,]<-ww
if(sum(ww)>0) {
www<-(sum((ww)^2))^(-1)
} else {
www<-0
}
ess[i]<- www
}
return(list(ess=ess, WW=WW))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.