#' Create nuclear clusters
#'
#' @param calendar Calendar data read with \code{\link{read_calendar}}.
#' @param clusters_desc Clusters / groups description read with \code{\link{read_cluster_desc}}.
#' @param kd_cho Kd coefficients read with \code{\link{read_kd_cho}}.
#' @param start_date Starting date of the study, if \code{NULL} (default),
#' the date will be retrieve from the Antares study.
#' @param area_name Name of the area where to create clusters.
#' @param law_planned Law to use in Antares.
#' @param volatility_planned Volatility for the law.
#' @param constraints Stretch/Zircaloy constraints read with
#' \code{\link{read_constraints}}. Defaults to NULL.
#' @param opts
#' List of simulation parameters returned by the function
#' \code{setSimulationPath}
#'
#' @export
#'
#' @importFrom antaresRead simOptions
#' @importFrom antaresEditObject createCluster
#' @importFrom lubridate hours days
#' @importFrom stats setNames
#' @importFrom stringi stri_replace_all_regex
#' @importFrom progress progress_bar
create_clusters_nuclear <- function(calendar, clusters_desc, kd_cho, start_date = NULL, area_name = NULL,
law_planned = "geometric", volatility_planned = 1, constraints = NULL,
opts = simOptions()) {
if (is.null(start_date))
start_date <- format(opts$start, format = "%Y-%m-%d")
area_name <- get_area_name(area_name)
unique_tranches <- unique(clusters_desc[grepl("Nucléaire", type_groupe),]$corresp_groupes)
n_days <- if (is_leapyear(opts)) 366 else 365
pb <- progress_bar$new(
format = " Preparing modulation data [:bar] :percent",
total = length(unique_tranches), clear = FALSE
)
datetime_study <- seq(from = as.POSIXct(start_date, tz = "UTC"), length.out = 8760, by = "1 hour")
datetime_study_chr <- as.character(datetime_study)
# Modulation data
modulation_list <- lapply(
X = setNames(
object = unique_tranches,
nm = unique_tranches
),
FUN = function(cluster) {
pb$tick()
dat <- calendar[tranche == cluster]
if (nrow(dat) == 0) {
coef_clus <- get_clusters_coef(cluster, clusters_desc, kd_cho, start_date)
capacity_modulation <- rep(head(coef_clus$abat_rso, 365), each = 24)
} else {
datetime_prolongation <- lapply(
X = seq_len(nrow(dat)),
FUN = function(i) {
if (dat$date_de_fin_sans_prolongation[i] > dat$date_debut[i]) {
res <- seq(
from = dat$date_debut[i],
to = dat$date_de_fin_sans_prolongation[i] + days(1) - hours(1),
by = "1 hour"
)
as.character(res)
}
}
)
coef_clus <- get_clusters_coef(cluster, clusters_desc, kd_cho, start_date)
datetime_prolongation <- unlist(datetime_prolongation)
capacity_modulation <- (!datetime_study_chr %in% datetime_prolongation) * rep(head(coef_clus$abat_rso, 365), each = 24)
}
if (!is.null(constraints) && cluster %in% constraints$groupe) {
date_debut <- constraints[groupe == cluster, date_debut]
date_fin <- constraints[groupe == cluster, date_fin]
min_gen_modulation <- ifelse(datetime_study >= date_debut & datetime_study < date_fin, 1, 0)
} else {
min_gen_modulation <- rep(0, times = 8760 * 1)
}
matrix(
data = c(
rep(1, times = 8760 * 2),
capacity_modulation,
min_gen_modulation
),
ncol = 4
)
}
)
pb <- progress_bar$new(
format = " Preparing TS data [:bar] :percent",
total = length(unique_tranches), clear = FALSE
)
# Preprop data
data_list <- lapply(
X = setNames(
object = unique_tranches,
nm = unique_tranches
),
FUN = function(cluster) {
pb$tick()
dat <- calendar[tranche == cluster]
if (nrow(dat) == 0) {
coef_clus <- get_clusters_coef(cluster, clusters_desc, kd_cho, start_date)
res <- matrix(
data = c(
rep(7, times = n_days * 1),
rep(1, times = n_days * 1),
head((1 - coef_clus$kidispo_hqe), n = n_days),
rep(0, times = n_days * 2),
rep(1, times = n_days * 1)
),
ncol = 6
)
} else {
date_study <- seq(from = as.Date(start_date), length.out = n_days, by = "1 day")
date_reprise <- which(as.character(date_study) %in% as.character(dat$date_de_fin_sans_prolongation))
duree_prolongation_mean <- dat$duree_prolongation_mean[as.character(dat$date_de_fin_sans_prolongation) %in% as.character(date_study)]
res <- matrix(
data = c(
rep(7, times = n_days * 1),
rep(1, times = n_days * 1),
rep(0, times = n_days * 3),
rep(1, times = n_days * 1)
),
ncol = 6
)
date_arret_prolongation <- lapply(
X = seq_len(nrow(dat)),
FUN = function(i) {
if (dat$date_de_fin_sans_prolongation[i] > dat$date_debut[i]) {
res <- seq(
from = as.Date(dat$date_debut[i]),
# to = as.Date(dat$date_de_fin_avec_prolongation[i]) - days(1),
to = as.Date(dat$date_de_fin_sans_prolongation[i]) + days(dat$duree_prolongation_mean[i]) - days(1),
by = "1 day"
)
as.character(res)
}
}
)
coef_clus <- get_clusters_coef(cluster, clusters_desc, kd_cho, start_date)
date_study <- as.character(date_study)
date_arret_prolongation <- unlist(date_arret_prolongation)
fo_rate <- (!date_study %in% date_arret_prolongation) * (1 - coef_clus$kidispo_hqe)
res[, 3] <- head(fo_rate, n = n_days)
# browser()
res[date_reprise, 2] <- duree_prolongation_mean
res[date_reprise, 4] <- 1
}
return(res)
}
)
pb <- progress_bar$new(
format = " Creating nuclear clusters [:bar] :percent",
total = length(unique_tranches), clear = FALSE
)
for (cluster in unique_tranches) {
pb$tick()
code_pal <- clusters_desc[corresp_groupes == cluster, c(code_palier)]
cluster_infos <- descr_clusters(paste0("nuclear_", code_pal))
opts <- createCluster(
opts = opts,
area = area_name,
cluster_name = stri_replace_all_regex(str = cluster, pattern = "[^[:alnum:]]", replacement = "_"),
add_prefix = TRUE,
group = "nuclear",
unitcount = 1L,
nominalcapacity = clusters_desc[corresp_groupes == cluster, c(pcn_mw)],
`min-stable-power` = clusters_desc[corresp_groupes == cluster, c(pmin_mw)],
`must-run` = FALSE,
# `min-down-time` = 1L,
# `min-up-time` = 168L,
`volatility.planned` = volatility_planned,
`law.planned` = law_planned,
`min-up-time` = cluster_infos[["min-up-time"]],
`min-down-time` = cluster_infos[["min-down-time"]],
spinning = cluster_infos[["spinning"]],
`marginal-cost` = cluster_infos[["marginal-cost"]],
`spread-cost` = cluster_infos[["spread-cost"]],
`startup-cost` = cluster_infos[["startup-cost"]],
`market-bid-cost` = cluster_infos[["market-bid-cost"]],
prepro_data = data_list[[cluster]],
prepro_modulation = modulation_list[[cluster]]
)
}
invisible(opts)
}
#' @importFrom data.table setorder
#' @importFrom lubridate years year
get_clusters_coef <- function(name, clusters_desc, kd_cho, date_study) {
code_pal <- clusters_desc[corresp_groupes == name, c(code_palier)]
coefkd_week <- kd_cho[code_palier %in% code_pal, list(week = n_sem_annee, abat_rso, kidispo_hqe)]
date_study <- as.Date(date_study)
coefkd_week <- merge(
x = coefkd_week,
y = build_weekcal(start = year(date_study), end = year(date_study) + 2),
all.x = TRUE, all.y = FALSE
)
coefkd_week <- coefkd_week[rep(seq_len(.N), each = 7)]
coefkd_week[, num_seq := seq_len(.N) - 1, by = week]
coefkd_week[, week_start := week_start + num_seq]
coefkd_week <- coefkd_week[, list(date = week_start, abat_rso, kidispo_hqe)]
coefkd_week <- coefkd_week[date >= date_study & date < date_study + lubridate::years(1)]
setorder(coefkd_week, date)
coefkd_week[]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.