Description Usage Arguments Value Examples
View source: R/postprocessing.R
Plot the interpolated surface
1 2 | get_interpolation_plot(obs_coord, dpc_grid, fit, fineness = 16,
contour_binwidth = NULL, do_grid = TRUE)
|
obs_coord |
Coordinates of original observations |
dpc_grid |
Discrete Process Convolution grid |
fit |
Fitted model |
fineness |
Resolution of interpolation (1 = coarse, 10 = fine) |
contour_binwidth |
Width of bins for contour plot |
do_grid |
Plot DPC gridpoints? |
Plot of gridded posterior predictive means
1 2 3 4 5 6 7 | s = expand.grid(lat = -1:1, lon=-1:1)
y = c(1,0,0,0,1,0,0,0,1)
dpc_grid = get_grid(c(-1,1), c(-1,1), spacing = 2)
priors = get_priors(dpc_grid)
iso_kernel_matrix = get_kernel_matrix(s, dpc_grid)
fit = get_mcmc(s, dpc_grid, y, 10, 1000, priors, 100, 1)
get_interpolation_plot(s, dpc_grid, fit, contour_binwidth = 0.1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.