Description Usage Arguments Value Examples
Markov chain Monte Carlo (Gibbs) method to sample from the conditional distributions of gamma and tau
1 2 |
s |
Observation locations |
dpc_grid |
Discrete Process Convolution grid |
y |
Observation values |
nburn |
Number of EM iterations (burn-in) use dto estimate kernel parameters (rho) |
nsample |
Number of MCMC iterations |
priors |
Priors for gamma and tau |
printEvery |
Console notifications every X iterations |
seed |
Seed for reproducible chains |
List with sampled values of gamma and tau, as well as optimal estimates for rho
1 2 3 4 5 6 7 | s = data.frame(lat = rep(0, 3), lon = c(-1:1))
y = c(1,1,0)
dpc_grid = get_grid(c(-1,1), c(0,0), spacing = 2)
priors = get_priors(dpc_grid)
iso_kernel_matrix = get_kernel_matrix(s, dpc_grid)
fit = get_mcmc(s, dpc_grid, y, 10, 1000, priors, 100, 1)
cbind(get_estimates(s, dpc_grid, fit), obs = y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.