# Define columns for each spreadsheet.
column_names <- list( '2011' = list( 'sa1' = c('data_subclass',
'structure',
'sa1_7_code',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'year'),
'sa2' =c('data_subclass',
'structure',
'area_code',
'area_name',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'year'),
'lga' = c('data_subclass',
'structure',
'area_code',
'area_name',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'year'),
'postcode' = c('data_subclass',
'structure',
'area_code',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'year'),
'suburb' = c('data_subclass',
'structure',
'area_code',
'area_name',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'year')
),
'2016' = list( 'sa1' = c('data_subclass',
'structure',
'sa1_7_code',
'sa1_11_code',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'year'),
'sa2' =c('data_subclass',
'structure',
'area_code',
'area_name',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'year'),
'lga' = c('data_subclass',
'structure',
'area_code',
'area_name',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'year'),
'postcode' = c('data_subclass',
'structure',
'area_code',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'caution_poor_sa1_representation',
'postcode_crosses_state_boundary',
'year'),
'suburb' = c('data_subclass',
'structure',
'area_code',
'area_name',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'caution_poor_sa1_representation',
'year')
),
'2021' = list( 'sa1' = c('data_subclass',
'structure',
'sa1_11_code',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'year'),
'sa2' =c('data_subclass',
'structure',
'area_code',
'area_name',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'year'),
'lga' = c('data_subclass',
'structure',
'area_code',
'area_name',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'year'),
'postcode' = c('data_subclass',
'structure',
'area_code',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'caution_poor_sa1_representation',
'postcode_crosses_state_boundary',
'year'),
'suburb' = c('data_subclass',
'structure',
'area_code',
'area_name',
'population',
'score',
'rank_aus',
'decile_aus',
'percentile_aus',
'state',
'rank_state',
'decile_state',
'percentile_state',
'min_score_sa1_area',
'max_score_sa1_area',
'percent_usual_resident_pop_without_sa1_score',
'caution_poor_sa1_representation',
'year')
)
)
release_years <- names(column_names)
for(release_year in release_years){
test_that(paste0('can Import SEIFA SA1 scores for ', release_year, ' release' ), {
skip_on_cran()
skip_if_offline()
df <- get_seifa(structure = 'sa1', year = release_year)
expect_is(df, 'data.frame')
expect_equal(colnames(df), column_names[[release_year]][['sa1']])
})
test_that(paste0('can Import SEIFA SA2 scores for ', release_year, ' release' ), {
skip_on_cran()
skip_if_offline()
df <- get_seifa(structure = 'sa2', year = release_year)
expect_is(df, 'data.frame')
expect_equal(colnames(df), column_names[[release_year]][['sa2']])
})
test_that(paste0('can Import SEIFA LGA scores for ', release_year, ' release'), {
skip_on_cran()
skip_if_offline()
df <- get_seifa(structure = 'lga', year = release_year)
expect_is(df, 'data.frame')
expect_equal(colnames(df), column_names[[release_year]][['lga']])
})
test_that(paste0('can Import SEIFA postcode scores for ', release_year, ' release' ), {
skip_on_cran()
skip_if_offline()
df <- get_seifa(structure = 'postcode', year = release_year)
expect_is(df, 'data.frame')
expect_equal(colnames(df), column_names[[release_year]][['postcode']])
})
test_that(paste0('can Import SEIFA suburb scores for ', release_year, ' release' ), {
skip_on_cran()
skip_if_offline()
df <- get_seifa(structure = 'suburb', year = release_year)
expect_is(df, 'data.frame')
expect_equal(colnames(df), column_names[[release_year]][['suburb']])
})
}
test_that('sa1 spreadsheet can be parsed for 2016 release', {
df <- get_seifa_index_sheet(system.file('extdata',
'sa1_seifa_indexes_test.xls',
package = 'strayr',
mustWork = TRUE),
'Table 2',
'sa1',
'irsed',
year = '2016')
expect_is(df, 'data.frame')
### data_subclass is added in the next step
expect_equal(colnames(df), column_names[['2016']][['sa1']][2:length(column_names[['2016']][['sa1']])] )
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.