library(mlbench)
data(Glass)
err <- function(y.true, y.pred) { sum(y.pred!=y.true)/length(y.true) }
summary(Glass)
type = 'even'
size = 5
d <- discretization.prepare(Glass, seq(9),
list(list(size, type),list(size, type),list(size, type), list(size, type),list(size, type),
list(size, type),list(size, type),list(size, type),list(size, type)))
summary(discretization.apply(Glass, d))
v <- runif(nrow(Glass))
train <- Glass[v>=0.2,]
test <- Glass[v<0.2,]
tree1 <- rpart(Type ~., train)
err(test$Type, predict(tree1, test, type="class"))
b <- naiveBayes(Type ~., train)
err(test$Type, predict(b, test, type="class"))
type = 'size'
size = 10
d <- discretization.prepare(train,seq(9),
list(list(size, type),list(size, type),
list(size, type), list(size, type),list(size, type),
list(size, type),list(size, type),list(size, type),list(size, type)))
train2 <- discretization.apply(train, d)
test2 <- discretization.apply(test, d)
tree1 <- rpart(Type ~., train2)
err(test$Type, predict(tree1, test2, type="class"))
b <- naiveBayes(Type ~., train2)
err(test$Type, predict(b, test2, type="class"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.