Description Objects from the Class Methods Author(s) References See Also Examples
An object of the SaemixModel class, representing a nonlinear mixed-effect model structure, used by the SAEM algorithm.
An object of the SaemixModel class can be created by using the function saemixModel
and contain the following slots:
model
:Object of class "function"
: name of the function used to get predictions from the model (see the User Guide and the online examples for the format and what this function should return).
description
:Object of class "character"
: an optional text description of the model
psi0
:Object of class "matrix"
: a matrix with named columns containing the initial estimates for the parameters in the model (first line) and for the covariate effects (second and subsequent lines, optional). The number of columns should be equal to the number of parameters in the model.
transform.par
:Object of class "numeric"
: vector giving the distribution for each model parameter (0: normal, 1: log-normal, 2: logit, 3: probit). Its length should be equal to the number of parameters in the model.
fixed.estim
:Object of class "numeric"
: for each parameter, 0 if the parameter is fixed and 1 if it should be estimated. Defaults to a vector of 1 (all parameters are estimated). Its length should be equal to the number of parameters in the model.
error.model
:Object of class "character"
: name of the error model. Valid choices are "constant" (default), "proportional" and "combined" (see equations in User Guide)
covariate.model
:Object of class "matrix"
: a matrix of 0's and 1's, with a 1 indicating that a parameter-covariate relationship is included in the model (and an associated fixed effect will be estimated). The nmuber of columns should be equal to the number of parameters in the model and the number of rows to the number of covariates.
covariance.model
:Object of class "matrix"
: a matrix f 0's and 1's giving the structure of the variance-covariance matrix. Defaults to the Identity matrix (diagonal IIV, no correlations between parameters)
omega.init
:Object of class "matrix"
: a matrix giving the initial estimate for the variance-covariance matrix
error.init
:Object of class "numeric"
: a vector giving the initial estimate for the parameters of the residual error
Additional elements are added to the model object after a call to saemix
and are used in the algorithm.
signature(x = "SaemixModel")
: replace elements of object
signature(x = "SaemixModel")
: access elements of object
signature(.Object = "SaemixModel")
: internal function to initialise object, not to be used
signature(x = "SaemixModel")
: plot predictions from the model
signature(x = "SaemixModel")
: prints details about the object (more extensive than show)
signature(object = "SaemixModel")
: shows all the elements in the object
signature(object = "SaemixModel")
: prints details about the object
Emmanuelle Comets emmanuelle.comets@inserm.fr
Audrey Lavenu
Marc Lavielle.
Comets E, Lavenu A, Lavielle M. Parameter estimation in nonlinear mixed effect models using saemix, an R implementation of the SAEM algorithm. Journal of Statistical Software 80, 3 (2017), 1-41.
Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics and Data Analysis 49, 4 (2005), 1020-1038.
Comets E, Lavenu A, Lavielle M. SAEMIX, an R version of the SAEM algorithm. 20th meeting of the Population Approach Group in Europe, Athens, Greece (2011), Abstr 2173.
SaemixData
SaemixObject
saemixControl
saemix
plot.saemix
1 | showClass("SaemixModel")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.