Description Slots Objects from the Class Methods Author(s) References See Also Examples
An object of the SaemixData class, representing a longitudinal data structure, used by the SAEM algorithm.
name.data
Object of class "character"
: name of the dataset
@slot header Object of class "logical"
: whether the dataset/file contains a header. Defaults to TRUE
@slot sep Object of class "character"
: the field separator character
@slot na Object of class "character"
: a character vector of the strings which are to be interpreted as NA values
@slot messages Object of class "logical"
: if TRUE, the program will display information about the creation of the data object
@slot name.group Object of class "character"
: name of the column containing the subject id
@slot name.predictors Object of class "character"
: name of the column(s) containing the predictors
@slot name.response Object of class "character"
: name of the column containing the response variable y modelled by predictor(s) x
@slot name.covariates Object of class "character"
: name of the column(s) containing the covariates, if present (otherwise empty)
@slot name.X Object of class "character"
: name of the column containing the regression variable to be used on the X axis in the plots
@slot name.mdv Object of class "character"
: name of the column containing the indicator variable denoting missing data
@slot name.cens Object of class "character"
: name of the column containing the indicator variable denoting censored data (the value in the name.response column will be taken as the censoring value)
@slot name.occ Object of class "character"
: name of the column containing the value of the occasion
@slot name.ytype Object of class "character"
: name of the column containing the response number
@slot trans.cov Object of class "list"
: the list of transformation applied to the covariates (currently unused, TODO)
@slot units Object of class "list"
: list with up to three elements, x, y and optionally covariates, containing the units for the X and Y variables respectively, as well as the units for the different covariates
@slot data Object of class "data.frame"
: dataframe containing the data, with columns for id (name.group), predictors (name.predictors), response (name.response), and covariates if present in the dataset (name.covariates). A column "index" contains the subject index (used to map the subject id). The column names, except for the additional column index, correspond to the names in the original dataset.
@slot N Object of class "numeric"
: number of subjects
@slot yorig Object of class "numeric"
: response data, on the original scale. Used when the error model is exponential
@slot ocov Object of class "data.frame"
: original covariate data (before transformation in the algorithm)
@slot ind.gen Object of class "logical"
: indicator for genetic covariates (internal)
@slot ntot.obs Object of class "numeric"
: total number of observations
@slot nind.obs Object of class "numeric"
: vector containing the number of observations for each subject
An object of the SaemixData class can be created by using the function saemixData
and contain the following slots:
signature(x = "SaemixData")
: replace elements of object
signature(x = "SaemixData")
: access elements of object
signature(.Object = "SaemixData")
: internal function to initialise object, not to be used
signature(x = "SaemixData")
: plot the data
signature(x = "SaemixData")
: prints details about the object (more extensive than show)
signature(object = "SaemixData")
: internal function, not to be used
signature(object = "SaemixData")
: shows all the elements in the object
signature(object = "SaemixData")
: prints details about the object
signature(object = "SaemixData")
: summary of the data. Returns a list with a number of elements extracted from the dataset (N: the number of subjects; nobs: the total number of observations; nind.obs: a vector giving the number of observations for each subject; id: subject ID; x: predictors; y: response, and, if present in the data, covariates: the covariates (as many lines as observations) and ind.covariates: the individual covariates (one line per individual).
signature(object = "SaemixData")
: extract part of the data; this function will operate on the rows of the dataset (it can be used for instance to extract the data corresponding to the first ten subjects)
Emmanuelle Comets emmanuelle.comets@inserm.fr
Audrey Lavenu
Marc Lavielle.
Comets E, Lavenu A, Lavielle M. Parameter estimation in nonlinear mixed effect models using saemix, an R implementation of the SAEM algorithm. Journal of Statistical Software 80, 3 (2017), 1-41.
Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics and Data Analysis 49, 4 (2005), 1020-1038.
Comets E, Lavenu A, Lavielle M. SAEMIX, an R version of the SAEM algorithm. 20th meeting of the Population Approach Group in Europe, Athens, Greece (2011), Abstr 2173.
saemixData
SaemixModel
saemixControl
saemix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | showClass("SaemixData")
# Specifying column names
data(theo.saemix)
saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,
name.group=c("Id"),name.predictors=c("Dose","Time"),
name.response=c("Concentration"),name.covariates=c("Weight","Sex"),
units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")
# Specifying column numbers
data(theo.saemix)
saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,
name.group=1,name.predictors=c(2,3),name.response=c(4), name.covariates=5:6,
units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")
# No column names specified, using automatic recognition of column names
data(PD1.saemix)
saemix.data<-saemixData(name.data=PD1.saemix,header=TRUE,
name.covariates=c("gender"),units=list(x="mg",y="-",covariates=c("-")))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.