Description Usage Arguments Details Value Author(s) References See Also Examples
SAEM algorithm perform parameter estimation for nonlinear mixed effects models without any approximation of the model (linearization, quadrature approximation, . . . )
1 |
model |
an object of class SaemixModel, created by a call to the
function |
data |
an object of class SaemixData, created by a call to the function
|
control |
a list of options, see |
The SAEM algorithm is a stochastic approximation version of the standard EM algorithm proposed by Kuhn and Lavielle (see reference). Details of the algorithm can be found in the pdf file accompanying the package.
An object of class SaemixObject containing the results of the fit of the data by the non-linear mixed effect model. A summary of the results is printed out to the terminal, and, provided the appropriate options have not been changed, numerical and graphical outputs are saved in a directory.
Emmanuelle Comets <emmanuelle.comets@inserm.fr>, Audrey Lavenu, Marc Lavielle.
Comets E, Lavenu A, Lavielle M. Parameter estimation in nonlinear mixed effect models using saemix, an R implementation of the SAEM algorithm. Journal of Statistical Software 80, 3 (2017), 1-41.
Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics and Data Analysis 49, 4 (2005), 1020-1038.
Comets E, Lavenu A, Lavielle M. SAEMIX, an R version of the SAEM algorithm. 20th meeting of the Population Approach Group in Europe, Athens, Greece (2011), Abstr 2173.
SaemixData
,SaemixModel
,
SaemixObject
, saemixControl
,
plot.saemix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | data(theo.saemix)
saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,
name.group=c("Id"),name.predictors=c("Dose","Time"),
name.response=c("Concentration"),name.covariates=c("Weight","Sex"),
units=list(x="hr",y="mg/L", covariates=c("kg","-")), name.X="Time")
model1cpt<-function(psi,id,xidep) {
dose<-xidep[,1]
tim<-xidep[,2]
ka<-psi[id,1]
V<-psi[id,2]
CL<-psi[id,3]
k<-CL/V
ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)-exp(-ka*tim))
return(ypred)
}
saemix.model<-saemixModel(model=model1cpt,
description="One-compartment model with first-order absorption",
psi0=matrix(c(1.,20,0.5,0.1,0,-0.01),ncol=3, byrow=TRUE,
dimnames=list(NULL, c("ka","V","CL"))),transform.par=c(1,1,1),
covariate.model=matrix(c(0,1,0,0,0,0),ncol=3,byrow=TRUE),fixed.estim=c(1,1,1),
covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),
omega.init=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),error.model="constant")
# Not run (strict time constraints for CRAN)
# saemix.fit<-saemix(saemix.model,saemix.data,list(seed=632545,directory="newtheo",
# save=FALSE,save.graphs=FALSE))
# Prints a summary of the results
# print(saemix.fit)
# Outputs the estimates of individual parameters
# psi(saemix.fit)
# Shows some diagnostic plots to evaluate the fit
# plot(saemix.fit)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.