Description Details Author(s) References See Also Examples
- Computing the maximum likelihood estimator of the population parameters, without any approximation |
of the model (linearization, quadrature approximation, . . . ), using the Stochastic Approximation |
Expectation Maximization (SAEM) algorithm |
- Estimation of the Fisher Information matrix |
- Estimation of the individual parameters |
- Estimation of the likelihood |
- Plot convergence graphs |
Package: | saemix |
Type: | Package |
Version: | 0.9 |
Date: | 2010-09-19 |
License: | GPL (>=) 1.2 |
LazyLoad: | yes |
The SAEM package includes a number of undocumented functions, which are not meant to be used directly by the user.
setdefault
cutoff,cutoff.max, cutoff.eps, cutoff.res, compute.Uy, compute.Uy.nocov, conditional.distribution, gqg.mlx
normcdf, norminv
error
trnd.mlx, tpdf.mlx, gammarnd.mlx
transpsi, transphi, dtransphi
Emmanuelle Comets <emmanuelle.comets@inserm.fr>, Audrey Lavenu, Marc Lavielle.
Kuhn, E., and Lavielle, M. Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics and Data Analysis 49, 4 (2005), 1020-1038. Monolix32_UsersGuide.pdf (http://software.monolix.org/sdoms/software/)
nlme,SaemixData
,SaemixModel
, SaemixObject
,saemix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | data(theo.saemix)
saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,
name.group=c("Id"),name.predictors=c("Dose","Time"),
name.response=c("Concentration"),name.covariates=c("Weight","Sex"),
units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")
model1cpt<-function(psi,id,xidep) {
dose<-xidep[,1]
tim<-xidep[,2]
ka<-psi[id,1]
V<-psi[id,2]
CL<-psi[id,3]
k<-CL/V
ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)-exp(-ka*tim))
return(ypred)
}
saemix.model<-saemixModel(model=model1cpt,
description="One-compartment model with first-order absorption",
psi0=matrix(c(1.,20,0.5,0.1,0,-0.01),ncol=3, byrow=TRUE,dimnames=list(NULL,
c("ka","V","CL"))),transform.par=c(1,1,1),
covariate.model=matrix(c(0,1,0,0,0,0),ncol=3,byrow=TRUE),fixed.estim=c(1,1,1),
covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),
omega.init=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE), error.model="constant")
saemix.options<-list(seed=632545,save=FALSE,save.graphs=FALSE)
# Not run (strict time constraints for CRAN)
# saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)
# print(saemix.fit)
# plot(saemix.fit)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.