#' Estimate Minimum Convex Polygon (MCP) Isotope Niche
#'
#' Calculates the Minimum Convex Polygon for isotopic values at multiple confidence levels. Returns a list of
#' sf data frames, each list item representing the grouping variable (i.e. species).
#'
#' @param data data.frame object containing columns of isotopic values and grouping variables
#' @param x character giving the column name of the x coordinates
#' @param y character giving the column name of the y coordinates
#' @param group character giving the column name of the grouping variable (i.e. species)
#' @param levels Numeric vector of desired percent levels (e.g. c(10, 50, 90). Should not be less than 1 or greater than 100)
#' @param smallSamp logical value indicating whether to override minimum number of samples. Currently 10 samples are required.
#' @return A list of sf data frames, each list item representing the grouping variable.
#' @author Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming
#' @export
#' @import sf
#' @examples
#' library(rKIN)
#' data("rodents")
#' #estimate niche overlap between 2 species using minimum convex polygons
#' test.mcp<- estMCP(data=rodents, x="Ave_C", y="Ave_N", group="Species",
#' levels=c(50, 75, 95))
#' #determine polygon overlap for all polygons
#' plotKIN(test.mcp, scaler=2, title="Minimum Convex Hull Estimates", xlab="Ave_C", ylab="Ave_N")
estMCP <- function(data, x, y, group, levels= c(50, 75, 95), smallSamp = FALSE){
# need to perform some class testing first before running any below code
if(!inherits(data, "data.frame"))
stop("data must be a data.frame!")
if(!inherits(x, "character"))
stop("x must be a character giving the x coordinate column name!")
if(x %in% names(data)==FALSE)
stop("The value of x does not appear to be a valid column name!")
if(!inherits(data[, x], "numeric"))
stop("data in column x is not numeric!")
if(!inherits(y, "character"))
stop("y must be a character giving the y coordinate column name!")
if(y %in% names(data)==FALSE)
stop("The value of y does not appear to be a valid column name!")
if(!inherits(data[, y], "numeric"))
stop("data in column y is not numeric!")
if(!inherits(group, "character"))
stop("group must be a character giving the grouping variable column name!")
if(group %in% names(data)==FALSE)
stop("The value of group does not appear to be a valid column name!")
if(!inherits(levels, "numeric"))
stop("levels must be a numeric vector with values ranging between 1 and 100!")
if(!all(levels > 0 | levels <= 100))
stop("levels must be a numeric vector with values ranging between 1 and 100!")
grp<- unique(as.character(data[,group]))
# create the output object for SpatialPolygonsDataFrame(s)
#sfdf.list<- list()
# create the output object for SpatialPointsDataFrame(s)
#sfts.list<- list()
sf.tmp <- createSPDF()
for(g in 1:length(grp)){
df.g<- data[data[,group]==grp[g] , ]
# Test for the number of samples. If too small, kick an error
if(nrow(df.g) < 10 & smallSamp == FALSE)
stop(paste("It appears that group ", grp[g], " has fewer than 10 samples. Please remove group ", grp[g], " from the data.frame."))
if(nrow(df.g) < 3 & smallSamp == TRUE)
stop(paste("It appears that group ", grp[g], " has fewer than 3 samples. Please remove group ", grp[g], " from the data.frame."))
# calculate the centroid of the points to estimate distnace confidence intervals
cent <- apply(df.g[, c(x, y)], 2, mean)
# function to calculate Euclidean distance
euc.dist <- function(xy1, xy2) {
d <- sqrt(((xy1[1] - xy2[1])^2) + ((xy1[2] - xy2[2])^2))
return(d)
}
# create the spatial points data.frame
# populate the points into the spdf
# create data frame with coords first
# then turn into sf object with st_as_sf and remove = FALSE
df.tmp <- data.frame(Method = rep("MCP", nrow(df.g)),
Group = rep(grp[g], nrow(df.g)),
x = df.g[, x], y = df.g[, y])
if (!exists("sfts.tmp")) {
sfts.tmp <- sf::st_as_sf(df.tmp, coords = c("x", "y"), remove = FALSE)
names(sfts.tmp)[3:4] <- c(x, y)
}
else {
temp <- sf::st_as_sf(df.tmp, coords = c("x", "y"), remove = FALSE)
names(temp)[3:4] <- c(x, y)
sfts.tmp <- rbind(sfts.tmp, temp)
}
# set column names to the input values
# measure distance of each observation to centroid and append to data.frame
df.g$Dist <- apply(df.g[ , c(x, y)], 1, FUN = function(p){euc.dist(p, cent)})
# loop through each level
for(lev in 1:length(levels)){
# filter rows which meet MCP level threshold distance from centroid
df.xy<- df.g[which(df.g$Dist <= stats::quantile(df.g$Dist, levels[lev] / 100)), c(x, y)]
# get rows creeating MCP
df.xy<- df.xy[grDevices::chull(x = df.xy[ , 1], y = df.xy[ , 2]), ]
# append first row to end to complete the polygon
df.xy<- rbind(df.xy, df.xy[1, ])
print(class(df.xy))
# create a single spatial polygon
sfStdy <- sf::st_as_sf(df.xy, coords = c(x, y)) |>
sf::st_combine() |>
sf::st_cast("POLYGON")
sfStdy <- sf::st_as_sf(cbind(data.frame(Method = "MCP", Group = grp[g], ConfInt = levels[lev], ShapeArea = NA_real_), sfStdy))
sfStdy$ShapeArea <- sf::st_area(sfStdy$geometry)
sf.tmp <- rbind(sf.tmp, sfStdy)
} # end levels loop
# add the group polygon to the list of outputs
#sfdf.list<- c(sfdf.list, sf.tmp)
# add the group points to the list of outputs
#sfts.list<- c(sfts.list, sfts.tmp)
}# close group loop
# describe the polygons
#names(sfdf.list)<- grp
#class(sfdf.list)<- "estObj"
# describe the points
#names(sfts.list)<- grp
#class(sfts.list)<- "estInput"
# combine the polygons and points
#mcp<- list(estInput = sfts.list, estObj = sfdf.list)
mcp<- list(estInput = sfts.tmp, estObj = sf.tmp)
attr(mcp, "package")<- "rKIN"
return(mcp)
}# close function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.