## ----echo=TRUE,message=FALSE, warning=FALSE-----------------------------------
library(ggplot2)
library(lubridate)
library(tidyr)
library(dplyr)
library(gss)
library(phisStatR)
myreport<-substr(now(),1,10)
## ----oneprint,echo=TRUE,message=FALSE, warning=FALSE--------------------------
data(plant3)
cat("-------------- plant3 dataset ---------------\n")
printExperiment(datain=plant3)
## ----echo=TRUE,message=FALSE, warning=FALSE-----------------------------------
# Import data, here is a dataset in the phisStatR package, You have to import your own dataset
# using a read.table() statement or a request to the web service
# You can add some datamanagement statements...
#------------------------------------------------------------------------
# Please, add the 'Ref' and 'Genosce' columns if don't exist.
# 'Ref' is the concatenation of experimentAlias-Line-Position-scenario
# 'Genosce' is the concatenation of experimentAlias-genotypeAlias-scenario
#------------------------------------------------------------------------
mydata<-unite(plant3,Genosce,experimentAlias,genotypeAlias,scenario,sep="-",remove=FALSE)
mydata<-arrange(mydata,Genosce)
## ----algo,echo=TRUE,message=FALSE, warning=FALSE------------------------------
# For one parameter, for example biovolume
resbio<-fitGSS(datain=mydata,trait="biovolume",loopId="Genosce")
## ----echo=TRUE,message=FALSE, warning=FALSE-----------------------------------
outlierbio<-printGSS(object=resbio[[2]],threshold = 0.05)
klbio<-printGSS(object=resbio[[2]],threshold = NULL)
cat("Detection of outlier curve with KL projection:\n")
print(outlierbio)
#------------------------------------------------
# You can export these two datasets
# suppress the comments
#------------------------------------------------
#write.table(outlierbio,paste0(myreport,"outlier_gss_biovolume.csv"),row.names = FALSE,sep="\t")
#write.table(klbio,paste0(myreport,"KLprojection_gss_biovolume.csv"),row.names = FALSE,sep="\t")
## ----graph,echo=TRUE,message=FALSE, warning=FALSE,fig.width=12, fig.height=16----
# plot of the smoothing splines by genotype-scenario
for(i in seq(1,length(unique(mydata[,"Genosce"])),by=12)){
myvec<-seq(i,i+11,1)
myvec<-myvec[myvec<=length(unique(mydata[,"Genosce"]))]
print(plotGSS(datain=mydata,modelin=resbio[[1]],trait="biovolume",myvec=myvec,lgrid=50))
cat("\n\n")
}
## ----session,echo=FALSE,message=FALSE, warning=FALSE--------------------------
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.