#' @title ROC for Model Performance
#' @description Plot ROC curves for logistic regression models to assess model performance.
#' Curve is labeled with AUC and 95% CI.
#'
#' @param ... ROC objects
#' @param plot_title title for the plot as a string
#'
#' @return none
#' @export
plot_roc <- function(..., plot_title) {
rocs <- list(...)
# Name each ROC object with AUC and 95% CIs
for (i in seq_along(rocs)) {
names(rocs)[i] <- paste0("AUC of model ", i, ": ",
round(rocs[[i]][["ci"]][2], 2),
" (", round(rocs[[i]][["ci"]][1], 2),
", ", round(rocs[[i]][["ci"]][3], 2), ")")
}
# Use linetype to differentiate curves "aes = 'linetype'"
pROC::ggroc(rocs, legacy.axes = TRUE, size = 0.8) +
ggplot2::labs(title = plot_title) +
ggplot2::theme_classic() +
ggplot2::theme(legend.title = ggplot2::element_blank(),
legend.position = c(1, 0.05),
legend.justification = c(1, 0.05))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.