all_times <- list() # store the time for each chunk knitr::knit_hooks$set(time_it = local({ now <- NULL function(before, options) { if (before) { now <<- Sys.time() } else { res <- difftime(Sys.time(), now, units = "secs") all_times[[options$label]] <<- res } } })) knitr::opts_chunk$set( tidy = TRUE, tidy.opts = list(width.cutoff = 95), fig.width = 10, message = FALSE, warning = FALSE, time_it = TRUE, error = TRUE )
We recently introduced sctransform to perform normalization and variance stabilization of scRNA-seq datasets. We now release an updated version ('v2'), based on our broad analysis of 59 scRNA-seq datasets spanning a range of technologies, systems, and sequencing depths. This update improves speed and memory consumption, the stability of parameter estimates, the identification of variable features, and the the ability to perform downstream differential expression analyses.
Users can install sctransform v2 from CRAN (sctransform v0.3.3+) and invoke the use of the updated method via the vst.flavor
argument.
# install sctransform >= 0.3.3 install.packages("sctransform") # invoke sctransform - requires Seurat>=4.1 object <- SCTransform(object, vst.flavor = "v2")
Heterogeneity in single-cell RNA-seq (scRNA-seq) data is driven by multiple sources, including biological variation in cellular state as well as technical variation introduced during experimental processing. In Choudhary and Satija, 2021 we provide a set of recommendations for modeling variation in scRNA-seq data, particularly when using generalized linear models or likelihood-based approaches for preprocessing and downstream analysis.
In this vignette, we use sctransform v2 based workflow to perform a comparative analysis of human immune cells (PBMC) in either a resting or interferon-stimulated state. In this vignette we apply sctransform-v2 based normalization to perform the following tasks:
We will install sctransform v2 from CRAN. We will also install the glmGamPoi package which substantially improves the speed of the learning procedure.
# install glmGamPoi if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("glmGamPoi") # install sctransform from Github install.packages("sctransform")
library(Seurat) library(SeuratData) library(patchwork) library(dplyr) library(ggplot2)
The dataset is available through our SeuratData package.
# install dataset InstallData("ifnb")
# load dataset ifnb <- LoadData("ifnb") # split the dataset into a list of two seurat objects (stim and CTRL) ifnb.list <- SplitObject(ifnb, split.by = "stim") ctrl <- ifnb.list[["CTRL"]] stim <- ifnb.list[["STIM"]]
To perform normalization, we invoke SCTransform
with an additional flag vst.flavor="v2"
to invoke
the v2 regularization. This provides some improvements over our original approach first introduced in Hafemeister and Satija, 2019.
# normalize and run dimensionality reduction on control dataset ctrl <- SCTransform(ctrl, vst.flavor = "v2", verbose = FALSE) %>% RunPCA(npcs = 30, verbose = FALSE) %>% RunUMAP(reduction = "pca", dims = 1:30, verbose = FALSE) %>% FindNeighbors(reduction = "pca", dims = 1:30, verbose = FALSE) %>% FindClusters(resolution = 0.7, verbose = FALSE) p1 <- DimPlot(ctrl, label = T, repel = T) + ggtitle("Unsupervised clustering") p2 <- DimPlot(ctrl, label = T, repel = T, group.by = "seurat_annotations") + ggtitle("Annotated celltypes") p1 | p2
To perform integration using the pearson residuals calculated above, we use the PrepSCTIntegration()
function after selecting a list of informative features using SelectIntegrationFeatures()
:
stim <- SCTransform(stim, vst.flavor = "v2", verbose = FALSE) %>% RunPCA(npcs = 30, verbose = FALSE) ifnb.list <- list(ctrl = ctrl, stim = stim) features <- SelectIntegrationFeatures(object.list = ifnb.list, nfeatures = 3000) ifnb.list <- PrepSCTIntegration(object.list = ifnb.list, anchor.features = features)
To integrate the two datasets, we use the FindIntegrationAnchors()
function, which takes a list of Seurat objects as input, and use these anchors to integrate the two datasets together with IntegrateData()
.
immune.anchors <- FindIntegrationAnchors(object.list = ifnb.list, normalization.method = "SCT", anchor.features = features) immune.combined.sct <- IntegrateData(anchorset = immune.anchors, normalization.method = "SCT")
Now we can run a single integrated analysis on all cells:
immune.combined.sct <- RunPCA(immune.combined.sct, verbose = FALSE) immune.combined.sct <- RunUMAP(immune.combined.sct, reduction = "pca", dims = 1:30, verbose = FALSE) immune.combined.sct <- FindNeighbors(immune.combined.sct, reduction = "pca", dims = 1:30) immune.combined.sct <- FindClusters(immune.combined.sct, resolution = 0.3)
To visualize the two conditions side-by-side, we can use the split.by
argument to show each condition colored by cluster.
DimPlot(immune.combined.sct, reduction = "umap", split.by = "stim")
We can also visualize the distribution of annotated celltypes across control and stimulated datasets:
p1 <- DimPlot(immune.combined.sct, reduction = "umap", group.by = "stim") p2 <- DimPlot(immune.combined.sct, reduction = "umap", group.by = "seurat_clusters", label = TRUE, repel = TRUE) p3 <- DimPlot(immune.combined.sct, reduction = "umap", group.by = "seurat_annotations", label = TRUE, repel = TRUE) p1 | p2 | p3
Using the normalized datasets with known celltype annotation, we can ask what genes change in different conditions for cells of the same type. First, we create a column in the meta.data slot to hold both the cell type and stimulation information and switch the current ident to that column.
immune.combined.sct$celltype.stim <- paste(immune.combined.sct$seurat_annotations, immune.combined.sct$stim, sep = "_") Idents(immune.combined.sct) <- "celltype.stim"
To run differential expression, we make use of 'corrected counts' that are stored in the data
slot of the the SCT
assay. Corrected counts are obtained by setting the sequencing depth for all the cells to a fixed value and reversing the learned regularized negative-binomial regression model. Prior to performing differential expression, we first run PrepSCTFindMarkers
, which ensures that the fixed value is set properly. Then we use FindMarkers(assay="SCT")
to find differentially expressed genes. Here, we aim to identify genes that are differently expressed between stimulated and control B cells.
immune.combined.sct <- PrepSCTFindMarkers(immune.combined.sct) b.interferon.response <- FindMarkers(immune.combined.sct, assay = "SCT", ident.1 = "B_STIM", ident.2 = "B_CTRL", verbose = FALSE) head(b.interferon.response, n = 15)
If running on a subset of the original object after running PrepSCTFindMarkers()
, FindMarkers()
should be invoked with recorrect_umi = FALSE
to use the existing corrected counts:
immune.combined.sct.subset <- subset(immune.combined.sct, idents = c("B_STIM", "B_CTRL")) b.interferon.response.subset <- FindMarkers(immune.combined.sct.subset, assay = "SCT", ident.1 = "B_STIM", ident.2 = "B_CTRL", verbose = FALSE, recorrect_umi = FALSE)
We can also use the corrected counts for visualization:
Idents(immune.combined.sct) <- "seurat_annotations" DefaultAssay(immune.combined.sct) <- "SCT" FeaturePlot(immune.combined.sct, features = c("CD3D", "GNLY", "IFI6"), split.by = "stim", max.cutoff = 3, cols = c("grey", "red"))
plots <- VlnPlot(immune.combined.sct, features = c("LYZ", "ISG15", "CXCL10"), split.by = "stim", group.by = "seurat_annotations", pt.size = 0, combine = FALSE) wrap_plots(plots = plots, ncol = 1)
To identify canonical cell type marker genes that are conserved across conditions, we provide the FindConservedMarkers()
function. This function performs differential gene expression testing for each dataset/group and combines the p-values using meta-analysis methods from the MetaDE R package. For example, we can identify genes that are conserved markers irrespective of stimulation condition in NK cells. Note that the PrepSCTFindMarkers
command does not to be rerun here.
nk.markers <- FindConservedMarkers(immune.combined.sct, assay = "SCT", ident.1 = "NK", grouping.var = "stim", verbose = FALSE) head(nk.markers)
# write.csv(x = t(as.data.frame(all_times)), file = "../output/timings/sctransform2.csv")
Session Info
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.