VST | R Documentation |
Apply variance stabilizing transformation for selection of variable features
VST(data, margin = 1L, nselect = 2000L, span = 0.3, clip = NULL, ...)
## Default S3 method:
VST(data, margin = 1L, nselect = 2000L, span = 0.3, clip = NULL, ...)
## S3 method for class 'IterableMatrix'
VST(
data,
margin = 1L,
nselect = 2000L,
span = 0.3,
clip = NULL,
verbose = TRUE,
...
)
## S3 method for class 'dgCMatrix'
VST(
data,
margin = 1L,
nselect = 2000L,
span = 0.3,
clip = NULL,
verbose = TRUE,
...
)
## S3 method for class 'matrix'
VST(data, margin = 1L, nselect = 2000L, span = 0.3, clip = NULL, ...)
data |
A matrix-like object |
margin |
Unused |
nselect |
Number of of features to select |
span |
the parameter |
clip |
Upper bound for values post-standardization; defaults to the square root of the number of cells |
... |
Arguments passed to other methods |
verbose |
... |
A data frame with the following columns:
“mean
”: ...
“variance
”: ...
“variance.expected
”: ...
“variance.standardized
”: ...
“variable
”: TRUE
if the feature selected as
variable, otherwise FALSE
“rank
”: If the feature is selected as variable, then how
it compares to other variable features with lower ranks as more variable;
otherwise, NA
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.