geva.quick: All-In-One Function for GEVA Intermediate Procedures

Description Usage Arguments Details Value Examples

View source: R/finalize.R

Description

Given a GEVAInput object, applies the geva.summarize(), geva.quantiles, geva.cluster, and geva.finalize in a single call. Optional arguments are passed to the internal calls of these functions.

Usage

1
geva.quick(gobject, ...)

Arguments

gobject

A GEVAInput, or any object that returns a GEVAInput upon calling inputdata(gobject) (e.g., GEVASummary or GEVAResults).

...

Optional arguments passed to geva.summarize(), geva.quantiles(), geva.cluster(), and geva.finalize()

Details

This function performs the summarization, quantile detecetion, and clustering of an input data, then merges the results together and, if applicable, performs a factor analysis. If the gobject is not a GEVAInput, it must provide a valid GEVAInput object when called by inputdata(gobject). Moreover, all parameters used in previous analysis will be taken into account. For instance, if gobject is a GEVASummary obtained by using variation.method='mad', the internal call to geva.summarize in this function will use variation.method='mad' as well, unless if another parameter for variation.method is specified in the ... arguments.

Therefore, this function can be useful not only as a shortcut to analyze GEVAInput but also for parameter testing when applied to a GEVAResults object, since the previous parameters are reused, while the specified parameters are overriden.

Value

A GEVAResults object

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
## Basic usage using a random generated input
ginput <- geva.ideal.example()   # Generates a random input example
gresults <- geva.quick(ginput)   # Performs the entire analysis (default parameters)

print(head(top.genes(gresults))) # Prints the results
plot(gresults)                        # Plots the final SV-plot


## Example with non-default parameters
ginput <- geva.ideal.example()   # Generates a random input example
gresults <- geva.quick(ginput,
                       summary.method="median",
                       variation.method="mad",
                       quantiles.method="density",
                       cluster.method="density",
                       resolution=0.32)

print(head(top.genes(gresults))) # Prints the results
plot(gresults)                   # Plots the final SV-plot

sbcblab/geva documentation built on March 15, 2021, 10:08 p.m.