library(akfishcondition)
# library(VAST)
# Retrieve length-weight, cpue, and biomass data; write to /data/
channel <- akfishcondition:::get_connected(schema = "AFSC")
akfishcondition::get_condition_data(channel = channel)
akfishcondition:::make_data_summary(dat_csv = here::here("data", "nbs_all_species.csv"), region = "NBS")
akfishcondition:::make_data_summary(dat_csv = here::here("data", "ebs_all_species.csv"), region = "EBS")
akfishcondition:::make_data_summary(dat_csv = here::here("data", "ai_all_species.csv"), region = "AI")
akfishcondition:::make_data_summary(dat_csv = here::here("data", "goa_all_species.csv"), region = "GOA")
# Setup ESR chapter settings
ESR_SETTINGS <-
list(
ESR_SPECIES = data.frame(
common_name = c(
"walleye pollock", "walleye pollock (100-250 mm)", "walleye pollock (>250 mm)", "Pacific cod",
"Pacific cod (juvenile)", "Pacific cod (adult)", "Atka mackerel", "arrowtooth flounder",
"flathead sole", "yellowfin sole", "northern rock sole", "southern rock sole", "Alaska plaice",
"Pacific ocean perch", "dusky rockfish", "northern rockfish", "Dover sole", "rex sole",
"shortraker rockfish", "rougheye rockfish", "blackspotted rockfish", "sharpchin rockfish"),
species_code =
c(21740, 21741, 21742, 21720, 21721, 21722, 21921, 10110, 10130,
10210, 10261, 10262, 10285, 30060, 30152, 30420, 10180, 10200, 30576, 30051, 30052, 30560),
AI =
c(FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
GOA =
c(FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE),
EBS =
c(FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
NBS =
c(FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)
),
VAST_SETTINGS =
data.frame(
species_code = c(30420, 30060, 10262, 21720, 21740, 10110, 30152,
30420, 30060, 10262, 21720, 21740, 21921, 10110, 21741, 21742,
10130, 10210, 10285, 21740, 21720, 10110, 10261, 21741, 21742,
21740, 21720, 10210, 10285, 21741, 21742
),
region =
c("GOA", "GOA", "GOA", "GOA", "GOA", "GOA", "GOA",
"AI", "AI", "AI", "AI", "AI", "AI", "AI", "AI", "AI",
"EBS", "EBS", "EBS", "EBS", "EBS", "EBS", "EBS", "EBS", "EBS",
"NBS", "NBS", "NBS", "NBS", "NBS", "NBS"
),
ObsModel_1 =
c(2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2
),
ObsModel_2 =
c(1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1
),
ObsModel_3 =
c(3, 3, 3, 3, 4, 4, 4,
3, 3, 3, 3, 4, 3, 4, 4, 4,
3, 3, 3, 4, 3, 4, 3, 4, 4,
4, 4, 3, 4, 4, 4
),
ObsModel_4 =
c(3, 3, 3, 3, 4, 4, 4,
3, 3, 3, 3, 4, 3, 4, 4, 4,
3, 3, 3, 4, 3, 4, 3, 4, 4,
4, 4, 3, 4, 4, 4
),
fl_min =
c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 100, 251,
0, 0, 0, 0, 0, 0, 0, 100, 251,
0, 0, 0, 0, 100, 251
),
fl_max =
c(1e7, 1e7, 1e7, 1e7, 1e7, 1e7, 1e7,
1e7, 1e7, 1e7, 1e7, 1e7, 1e7, 1e7, 250, 1e7,
1e7, 1e7, 1e7, 1e7, 1e7, 1e7, 1e7, 250, 1e7,
1e7, 1e7, 1e7, 1e7, 250, 1e7
),
n_knots =
c(400, 400, 400, 400, 400, 400, 400,
400, 600, 400, 400, 400, 400, 400, 400, 400,
400, 600, 400, 400, 750, 400, 400, 400, 400,
200, 200, 200, 200, 200, 200
)
)
)
# Setup ESP Pacific cod
ESP_SETTINGS <-
list(
ESP_SPECIES =
data.frame(
common_name = c("Pacific cod (juvenile)", "Pacific cod (adult)"),
species_code = c(21721, 21722),
AI = c(TRUE, TRUE),
GOA = c(TRUE, TRUE),
EBS = c(TRUE, TRUE),
NBS = c(FALSE, FALSE)),
VAST_SETTINGS = data.frame(species_code = c(21721, 21722,
21721, 21722,
21721, 21722),
region = c("GOA", "GOA",
"AI", "AI",
"EBS", "EBS"),
ObsModel_1 = c(2, 2,
2, 2,
2, 2),
ObsModel_2 = c(1, 1,
1, 1,
1, 1),
ObsModel_3 = c(3, 3,
4, 4,
3, 3),
ObsModel_4 = c(3, 3,
4, 4,
3, 3),
n_knots = c(400, 400,
400, 600,
750, 750),
fl_min = c(0, 504,
0, 581,
0, 581),
fl_max = c(503, 1e7,
580, 1e7,
580, 1e7)
)
)
# 1. Update stratum-biomass weighted condition indicators
# Aleutian Islands
ai_sbw <-
akfishcondition:::run_sbw_condition_multimodel(
stratum_col = "area_id",
biomass_col = "biomass_mt",
region = "AI",
covariates_to_use = c('sex', 'stratum'),
min_n = 10
)
# Gulf of Alaska
goa_sbw <-
akfishcondition:::run_sbw_condition_multimodel(
stratum_col = "area_id",
biomass_col = "biomass_mt",
region = "GOA",
covariates_to_use = c('sex', 'stratum'),
min_n = 10
)
# Eastern Bering Sea
ebs_sbw <-
akfishcondition:::run_sbw_condition_multimodel(
stratum_col = "area_id",
biomass_col = "biomass_mt",
region = "EBS",
covariates_to_use = c('sex', 'stratum'),
min_n = 10
)
# Northern Bering Sea
nbs_sbw <-
akfishcondition:::run_sbw_condition_multimodel(
stratum_col = "area_id",
biomass_col = "biomass_mt",
region = "NBS",
covariates_to_use = c('sex', 'stratum'),
min_n = 10
)
# 2. Save raw data to inst/extdata
AI_raw <- ai_sbw$input_data
GOA_raw <- goa_sbw$input_data
EBS_raw <- ebs_sbw$input_data
NBS_raw <- nbs_sbw$input_data
save(
AI_raw,
GOA_raw,
EBS_raw,
NBS_raw,
file = here::here("inst", "extdata", "raw_lw_bio.rda")
)
# 3. Run VAST indicator
## 3.1 Run VAST: Aleutian Islands
# ai_spp <- dplyr::filter(ESR_SETTINGS$VAST_SETTINGS,
# region == "AI")
#
# for(ii in 1:nrow(ai_spp)) {
# akfishcondition::run_vast_condition(x = ai_spp[ii,],
# response = "count")
# gc()
# }
## 3.2 Run VAST: Gulf of Alaska
# goa_spp <- dplyr::filter(ESR_SETTINGS$VAST_SETTINGS,
# region == "GOA")
#
# for(ii in 1:nrow(goa_spp)) {
#
# akfishcondition::run_vast_condition(x = goa_spp[ii,],
# response = "count")
# gc()
# }
## 3.3 Run VAST: EBS Shelf
# ebs_spp <- dplyr::filter(ESR_SETTINGS$VAST_SETTINGS,
# region == "EBS")
#
# for(ii in 1:nrow(ebs_spp)) {
# akfishcondition::run_vast_condition(x = ebs_spp[ii,],
# response = "count")
# gc()
# }
## 3.4 Run VAST: NBS
# nbs_spp <- dplyr::filter(ESR_SETTINGS$VAST_SETTINGS,
# region == "NBS")
#
# for(ii in 1:nrow(nbs_spp)) {
# akfishcondition::run_vast_condition(x = nbs_spp[ii,],
# response = "count")
# gc()
# }
## 3.5 Run VAST: ESP Pacific cod
# pcod_spp <- dplyr::filter(ESP_SETTINGS$VAST_SETTINGS,
# region == "EBS")
#
# for(ii in 1:nrow(pcod_spp)) {
# akfishcondition::run_vast_condition(x = pcod_spp[ii,],
# response = "count")
# gc()
# }
# 4. Load VAST indicators
# akfishcondition:::make_vast_table(region = "GOA", write_table = TRUE)
# akfishcondition:::make_vast_table(region = "EBS", write_table = TRUE)
# akfishcondition:::make_vast_table(region = "NBS", write_table = TRUE)
# akfishcondition:::make_vast_table(region = "AI", write_table = TRUE)
#
# # goa_vast_df <-bundle_vast_condition(region = "GOA", years = c(seq(1984, 1999, 3), seq(2001, 2022, 2)))
# ebs_vast_df <- akfishcondition::bundle_vast_condition(region = "EBS", years = c(1999:2019, 2021:2022))
# nbs_vast_df <- akfishcondition::bundle_vast_condition(region = "NBS", years = c(2010, 2017, 2019, 2021, 2022))
# ai_vast_df <- akfishcondition::bundle_vast_condition(region = "AI",
# years = c(1986, seq(1991, 2000, 3),
# seq(2002, 2006, 2),
# seq(2010, 2018, 2), 2022))
# 5. Update version in DESCRIPTION file
# Update sysdata.rda with raw data for the condition indicator and write raw data to inst/extdata.
EBS_INDICATOR <- list(
FULL_REGION = as.data.frame(
ebs_sbw$full_sbw) |>
dplyr::filter(common_name %in% ESR_SETTINGS$ESR_SPECIES$common_name[ESR_SETTINGS$ESR_SPECIES$EBS]),
STRATUM = as.data.frame(
dplyr::filter(
ebs_sbw$stratum_sbw,
common_name %in% ESR_SETTINGS$ESR_SPECIES$common_name[ESR_SETTINGS$ESR_SPECIES$EBS])
),
LAST_UPDATE = Sys.Date()
)
NBS_INDICATOR <- list(
FULL_REGION = as.data.frame(
nbs_sbw$full_sbw) |>
dplyr::filter(
common_name %in% ESR_SETTINGS$ESR_SPECIES$common_name[ESR_SETTINGS$ESR_SPECIES$NBS]),
STRATUM = as.data.frame(
dplyr::filter(
nbs_sbw$stratum_sbw,
common_name %in% ESR_SETTINGS$ESR_SPECIES$common_name[ESR_SETTINGS$ESR_SPECIES$EBS])
),
LAST_UPDATE = Sys.Date()
)
GOA_INDICATOR <- list(
FULL_REGION = as.data.frame(
goa_sbw$full_sbw) |>
dplyr::filter(common_name %in% ESR_SETTINGS$ESR_SPECIES$common_name[ESR_SETTINGS$ESR_SPECIES$GOA]),
STRATUM = as.data.frame(
dplyr::filter(
goa_sbw$stratum_sbw,
common_name %in% ESR_SETTINGS$ESR_SPECIES$common_name[ESR_SETTINGS$ESR_SPECIES$GOA])
),
LAST_UPDATE = Sys.Date()
)
AI_INDICATOR <- list(
FULL_REGION = as.data.frame(
ai_sbw$full_sbw) |>
dplyr::filter(common_name %in% ESR_SETTINGS$ESR_SPECIES$common_name[ESR_SETTINGS$ESR_SPECIES$AI]),
STRATUM = as.data.frame(
dplyr::filter(
ai_sbw$stratum_sbw,
common_name %in% ESR_SETTINGS$ESR_SPECIES$common_name[ESR_SETTINGS$ESR_SPECIES$AI])
),
LAST_UPDATE = Sys.Date()
)
PCOD_ESP <- list(
FULL_REGION_EBS = as.data.frame(
dplyr::filter(ebs_sbw$full_sbw,
common_name %in% ESP_SETTINGS$ESP_SPECIES$common_name
)),
FULL_REGION_GOA = as.data.frame(
dplyr::filter(goa_sbw$full_sbw,
common_name %in% ESP_SETTINGS$ESP_SPECIES$common_name
)),
FULL_REGION_AI = as.data.frame(
dplyr::filter(ai_sbw$full_sbw,
common_name %in% ESP_SETTINGS$ESP_SPECIES$common_name
)),
FULL_REGION_NBS = as.data.frame(
dplyr::filter(
nbs_sbw$full_sbw, common_name %in% ESP_SETTINGS$ESP_SPECIES$common_name
)),
STRATUM_EBS = as.data.frame(
dplyr::filter(
ebs_sbw$stratum_sbw, common_name %in% ESP_SETTINGS$ESP_SPECIES$common_name
)),
STRATUM_GOA = as.data.frame(
dplyr::filter(
goa_sbw$stratum_sbw, common_name %in% ESP_SETTINGS$ESP_SPECIES$common_name
)),
STRATUM_AI = as.data.frame(
dplyr::filter(
ai_sbw$stratum_sbw, common_name %in% ESP_SETTINGS$ESP_SPECIES$common_name
)),
stratum_NBS = NA,
LAST_UPDATE = Sys.Date()
)
usethis::use_data(EBS_INDICATOR, overwrite = TRUE)
usethis::use_data(AI_INDICATOR, overwrite = TRUE)
usethis::use_data(GOA_INDICATOR, overwrite = TRUE)
usethis::use_data(NBS_INDICATOR, overwrite = TRUE)
usethis::use_data(PCOD_ESP, overwrite = TRUE)
save(
EBS_INDICATOR,
NBS_INDICATOR,
GOA_INDICATOR,
AI_INDICATOR,
PCOD_ESP,
ESR_SETTINGS,
ESP_SETTINGS,
file = here::here("R", "sysdata.rda")
)
# 6. Update documentation, install, and restart
# Update version number in DESCRIPTION and update documentation using:
devtools::document(roclets = c('rd', 'collate', 'namespace'))
# After updating, reinstall the akfishcondition package.
# 7. Check that data appears correctly
# Check that the updated condition data is included in the package.
print(akfishcondition::AI_INDICATOR$LAST_UPDATE)
print(akfishcondition::GOA_INDICATOR$LAST_UPDATE)
print(akfishcondition::EBS_INDICATOR$LAST_UPDATE)
print(akfishcondition::NBS_INDICATOR$LAST_UPDATE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.