Description Usage Arguments Value Author(s) References Examples
Compute BIC scores for model selection
1 2 3 4 5 6 7 8 9 10 11 12 |
X |
One-dimensional predictor |
Y |
Outcome |
M |
Multivariate mediator |
tol |
(default -10^(-10)) convergence criterion |
max.iter |
(default=100) maximum iteration |
grpgroup |
(default=c(1,rep( 1:V +1,2))) |
lambda |
(default=log(1+(1:50)/125)) tuning parameter for L1 penalization |
penalty.factor |
(default=c(0,rep(sqrt(2),V))) give different weight of penalization for the 2V mediation paths. |
c directeffect
hatb Path b (M->Y given X) estimates
hata Path a (X->M) estimates
medest Mediation estimates (a*b)
alpha
lambda
nump Number of selected mediation paths
Seonjoo Lee, sl3670@cumc.columbia.edu
TBA
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.