Description Usage Arguments Details Value Author(s) References Examples
View source: R/sparse.txtmedint.sgrplasso.largep_omega.R
Sparse mediation with sparse group lasso (for mediation paths) and sparse precision matrix estimation using fast computation of inverse matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | sparse.txtmedint.sgrlasso.largep_omega(
X,
M,
Y,
X.scale = TRUE,
tol = 10^(-10),
max.iter = 10,
lambda1 = exp(seq(1, -3, length = 10)),
lambda2 = exp(-1),
alpha = c(0.95, 0.5),
group.penalty.factor = c(1, rep(1, ncol(M))),
penalty.factor = c(1, rep(1, ncol(M) * 3)),
verbose = FALSE,
Omega.out = FALSE,
threshold = 0,
non.zeros.stop = ncol(M)
)
|
X |
One-dimensional predictor |
M |
Multivariate mediator |
Y |
Outcome |
tol |
(default -10^(-10)) convergence criterion |
max.iter |
(default=100) maximum iteration |
lambda1 |
(default=seq(0.02,0.4,length=5)) tuning parameter for regression coefficient L1 penalization |
lambda2 |
Tuning parameter for Covariance matrix L1 penalization |
alpha |
(defult=1) tuning parameter for L2 penalization |
group.penalty.factor |
(V+1)-dimensional group penalty factor vector. If a user does not want to penalize mediator, specify 0 otherwise 1. The first element is the direct effect followed by V-mediators. The default value is c(0,rep(1,V)). |
penalty.factor |
(1+3*V)-dimensional sparsity penalty factor vector. The order of parameters: c(c,b11,b12,...,b1V, b21,...,b2V, a1,a2,...,aV) |
verbose |
(default=FALSE) print progress |
Omega.out |
(defult=FALSE) output Omega estimates (beta version WIP.) |
threshold |
(default=10^(-5)) |
non.zeros.stop |
(default=ncol(M)) When to stop the regularization path. |
Fit a mediation model via penalized maximum likelihood and structural equation model. The regularization path is computed for the lasso or elasticnet penalty at a grid of values for the regularization parameter lambda. Currently, mediation analysis is developed based on gaussian assumption.
Multiple Mediaton Model: (1) M = Xa + e1 (2) Y = Xc' + Mb + e2 And in the optimization, we do not regularize c', due to the assumption of partial mediation.
c directeffect
hatb Path b (M->Y given X) estimates
hata Path a (X->M) estimates
medest Mediation estimates (a*b)
alpha
lambda1 Tuning parameters for regression coefficients
lambda2 Tuning parameters for inversed covariance matrix (Omega)
nump Number of selected mediation paths
Omega Estimated covariance matrix of the mediator
Seonjoo Lee, sl3670@cumc.columbia.edu
TBA
1 2 3 4 5 6 7 8 9 10 11 12 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.