sparse.txtmedint.sgrlasso.largep_omega: Conduct sparse mediation for large p ( p > n)

Description Usage Arguments Details Value Author(s) References Examples

View source: R/sparse.txtmedint.sgrplasso.largep_omega.R

Description

Sparse mediation with sparse group lasso (for mediation paths) and sparse precision matrix estimation using fast computation of inverse matrix

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
sparse.txtmedint.sgrlasso.largep_omega(
  X,
  M,
  Y,
  X.scale = TRUE,
  tol = 10^(-10),
  max.iter = 10,
  lambda1 = exp(seq(1, -3, length = 10)),
  lambda2 = exp(-1),
  alpha = c(0.95, 0.5),
  group.penalty.factor = c(1, rep(1, ncol(M))),
  penalty.factor = c(1, rep(1, ncol(M) * 3)),
  verbose = FALSE,
  Omega.out = FALSE,
  threshold = 0,
  non.zeros.stop = ncol(M)
)

Arguments

X

One-dimensional predictor

M

Multivariate mediator

Y

Outcome

tol

(default -10^(-10)) convergence criterion

max.iter

(default=100) maximum iteration

lambda1

(default=seq(0.02,0.4,length=5)) tuning parameter for regression coefficient L1 penalization

lambda2

Tuning parameter for Covariance matrix L1 penalization

alpha

(defult=1) tuning parameter for L2 penalization

group.penalty.factor

(V+1)-dimensional group penalty factor vector. If a user does not want to penalize mediator, specify 0 otherwise 1. The first element is the direct effect followed by V-mediators. The default value is c(0,rep(1,V)).

penalty.factor

(1+3*V)-dimensional sparsity penalty factor vector. The order of parameters: c(c,b11,b12,...,b1V, b21,...,b2V, a1,a2,...,aV)

verbose

(default=FALSE) print progress

Omega.out

(defult=FALSE) output Omega estimates (beta version WIP.)

threshold

(default=10^(-5))

non.zeros.stop

(default=ncol(M)) When to stop the regularization path.

Details

Fit a mediation model via penalized maximum likelihood and structural equation model. The regularization path is computed for the lasso or elasticnet penalty at a grid of values for the regularization parameter lambda. Currently, mediation analysis is developed based on gaussian assumption.

Multiple Mediaton Model: (1) M = Xa + e1 (2) Y = Xc' + Mb + e2 And in the optimization, we do not regularize c', due to the assumption of partial mediation.

Value

c directeffect

hatb Path b (M->Y given X) estimates

hata Path a (X->M) estimates

medest Mediation estimates (a*b)

alpha

lambda1 Tuning parameters for regression coefficients

lambda2 Tuning parameters for inversed covariance matrix (Omega)

nump Number of selected mediation paths

Omega Estimated covariance matrix of the mediator

Author(s)

Seonjoo Lee, sl3670@cumc.columbia.edu

References

TBA

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
library(sparsemediation)
N=200
V=100
set.seed(1234)
a = c(rep(0,V-3),rep(1,3))*5;
b1=b2=rep(0,V)
b1[V]<-5
b2[V]<-5
X = rnorm(N)
M =  X %*% t(a)+ matrix(rnorm(N*V),N,V)
Y =  X + M %*% b1 + (X*M) %*% b2 +  rnorm(N)
#fit=sparse.txtmedint.sgrlasso.largep_omega(X,M,Y)

seonjoo/smm documentation built on Feb. 11, 2021, 5:54 a.m.