get_antibody_level_predictions | R Documentation |
Generates credible intervals on antibody levels and infection histories from an MCMC chain output.
get_antibody_level_predictions(
chain,
infection_histories,
antibody_data,
demographics = NULL,
individuals,
antigenic_map = NULL,
possible_exposure_times = NULL,
par_tab,
nsamp = 1000,
add_residuals = FALSE,
measurement_bias = NULL,
for_res_plot = FALSE,
expand_antibody_data = FALSE,
expand_to_all_times = FALSE,
antibody_level_before_infection = FALSE,
for_regression = FALSE,
data_type = 1,
start_level = "none"
)
chain |
the full MCMC chain to generate antibody level trajectories from |
infection_histories |
the MCMC chain for infection histories |
antibody_data |
the data frame of antibody level data |
individuals |
the subset of individuals to generate credible intervals for |
antigenic_map |
(optional) a data frame of antigenic x and y coordinates. Must have column names: x_coord; y_coord; inf_times. See |
possible_exposure_times |
(optional) if no antigenic map is specified, this argument gives the vector of times at which individuals can be infected |
par_tab |
the table controlling the parameters in the MCMC chain |
nsamp |
number of samples to take from posterior |
add_residuals |
if true, returns an extra output summarising residuals between the model prediction and data |
measurement_bias |
default NULL, optional data frame giving the index of ‘rho' that each biomarker_id and biomarker_group which uses the measurement shift from from. eg. if there’s 6 circulation years and 3 strain clusters |
for_res_plot |
TRUE/FALSE value. If using the output of this for plotting of residuals, returns the actual data points rather than summary statistics |
expand_antibody_data |
TRUE/FALSE value. If TRUE, solves antibody level predictions for the entire study period (i.e., between the range of antibody_data$sample_time). If left FALSE, then only solves for the infections times at which a antibody level against the circulating biomarker_id was measured in antibody_data. |
expand_to_all_times |
TRUE/FALSE value. If TRUE, solves antibody level predictions for all possible infection times (i.e., for the range in possible_exposure_times). If left FALSE, then only solves for the infections times at which a antibody level against the circulating biomarker_id was measured in antibody_data. |
antibody_level_before_infection |
TRUE/FALSE value. If TRUE, solves antibody level predictions, but gives the predicted antibody level at a given time point BEFORE any infection during that time occurs. |
for_regression |
if TRUE, returns posterior draws rather than posterior summaries |
data_type |
integer, currently accepting 1 or 2. Set to 1 for discretized, bounded data, or 2 for continuous, bounded data. |
a list with the antibody level predictions (95
## Not run:
data(example_theta_chain)
data(example_inf_chain)
data(example_antibody_data)
data(example_antigenic_map)
data(example_par_tab)
y <- get_antibody_level_predictions(example_theta_chain, example_inf_chain, example_antibody_data,
unique(example_antibody_data$individual), example_antigenic_map,
example_par_tab,expand_antibody_data = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.