#
# A <- health_state("A", cost="cost_health_A+ cost_drug ",utility=1)
# B <- health_state("B", cost="cost_health_B + cost_drug",utility=1)
# C <- health_state("C", cost="cost_health_C + cost_drug",utility=1)
# D <- health_state("D", cost=0,utility=0)
#
# tmat <- rbind(c(1, 2,3,4), c(NA, 5,6,7),c(NA, NA, 8,9), c(NA,NA,NA,10))
# colnames(tmat) <- rownames(tmat) <- c("A","B" ,"C","D")
#
#
# tm <- transition_matrix(4, tmat, c("tpAtoA","tpAtoB","tpAtoC","tpAtoD",
# "tpBtoB", "tpBtoC", "tpBtoD",
# "tpCtoC","tpCtoD","tpDtoD" ), colnames(tmat) )
#
# a<-define_parameters(cost_zido = 2278,
# cost_direct_med_A = 1701,
# cost_comm_care_A = 1055,
# cost_direct_med_B = 1774,
# cost_comm_care_B = 1278,
# cost_direct_med_C = 6948,
# cost_comm_care_C = 2059,
# tpAtoA = 1251/(1251+483),
# tpAtoB = 350/(350+1384),
# tpAtoC = 116/(116+1618),
# tpAtoD = 17/(17+1717),
# tpBtoB = 731/(731+527),
# tpBtoC = 512/(512+746),
# tpBtoD = 15/(15+1243),
# tpCtoC = 1312/(1312+437),
# tpCtoD = 437/(437+1312),
# tpDtoD = 1,
# cost_health_A = "cost_direct_med_A+ cost_comm_care_A",
# cost_health_B = "cost_direct_med_B+ cost_comm_care_B",
# cost_health_C = "cost_direct_med_C+ cost_comm_care_C",
# cost_drug = "cost_zido")
#
# health_states <- combine_state(A,B,C,D)
# mono_strategy <- strategy(tm, health_states, "mono")
#
# mono_markov <-markov_model(mono_strategy, 20, c(1, 0,0,0),c(0,0,0,0),discount=c(0.06,0),a)
#
# ################################
# #Define function to set the cost to be differnt for first two cycles
# define_comb_cost=function(cycle,cost_lami){
# if(cycle==2 || cycle ==3)
# return(cost_lami)
# else
# return(0)
# }
# #Define function to set the risk ratio to be differnt for first two cycles
#
# define_rr=function(cycle,rr){
# if(cycle==2 || cycle ==3)
# return(rr)
# else
# return(1)
# }
#
#
#
# A <- health_state("A", cost="cost_health_A + cost_drug",utility=1)
# B <- health_state("B", cost="cost_health_B + cost_drug",utility=1)
# C <- health_state("C", cost="cost_health_C + cost_drug",utility=1)
# D <- health_state("D", cost=0,utility=0)
#
# tmat <- rbind(c(1, 2,3,4), c(NA, 5,6,7),c(NA, NA, 8,9), c(NA,NA,NA,10))
# colnames(tmat) <- rownames(tmat) <- c("A","B" ,"C","D")
#
# tm <- transition_matrix(4, tmat, c("tpAtoA_rr","tpAtoB_rr","tpAtoC_rr","tpAtoD_rr",
# "tpBtoB_rr", "tpBtoC_rr", "tpBtoD_rr",
# "tpCtoC_rr","tpCtoD_rr","tpDtoD_rr" ), colnames(tmat) )
#
#
# # Combine the health states
# health_states <- combine_state(A,B,C,D)
#
# #The current strategy ie. control or intervention - here it is combination therapy
# comb_strategy <- strategy(tm, health_states, "comb")
#
# a_comb<-define_parameters(cost_zido = 2278,
# cost_direct_med_A = 1701,
# cost_comm_care_A = 1055,
# cost_direct_med_B = 1774,
# cost_comm_care_B = 1278,
# cost_direct_med_C = 6948,
# cost_comm_care_C = 2059,
# tpAtoA = 1251/(1251+483),
# tpAtoB = 350/(350+1384),
# tpAtoC = 116/(116+1618),
# tpAtoD = 17/(17+1717),
# tpBtoB = 731/(731+527),
# tpBtoC = 512/(512+746),
# tpBtoD = 15/(15+1243),
# tpCtoC = 1312/(1312+437),
# tpCtoD = 437/(437+1312),
# tpDtoD = 1,
# rr=0.509,
# cost_lami = 2086.50,
# rr_cycle="define_rr(markov_cycle,rr)",
# tpAtoA_rr="1-tpAtoB*rr_cycle-tpAtoC*rr_cycle-tpAtoD*rr_cycle",
# tpAtoB_rr="tpAtoB*rr_cycle",
# tpAtoC_rr="tpAtoC*rr_cycle",
# tpAtoD_rr="tpAtoD*rr_cycle",
# tpBtoB_rr="1-tpBtoC*rr_cycle-tpBtoD*rr_cycle",
# tpBtoC_rr="tpBtoC*rr_cycle",
# tpBtoD_rr="tpBtoD*rr_cycle",
# tpCtoC_rr="1-tpCtoD*rr_cycle",
# tpCtoD_rr="tpCtoD*rr_cycle",
# tpDtoD_rr=1,
# cost_health_A = "cost_direct_med_A + cost_comm_care_A",
# cost_health_B = "cost_direct_med_B + cost_comm_care_B",
# cost_health_C = "cost_direct_med_C + cost_comm_care_C",
# cost_lami_cycle = "define_comb_cost(markov_cycle,cost_lami)",
# cost_drug = "cost_zido + cost_lami_cycle")
#
# comb_markov <-markov_model(comb_strategy, 20, c(1, 0,0,0),c(0,0,0,0),discount=c(0.06,0.0),a_comb)
# list_markov <- combine_markov(mono_markov, comb_markov)
#
# calculate_icer_nmb(list_markov,1000,"mono")
# threshold_values <- seq(1000,20000,1000)
# plot_ceac(list_markov,threshold_values,"mono")
##################Test for DSA
A <- health_state("A", cost="cost_health_A+ cost_drug ",utility=1)
B <- health_state("B", cost="cost_health_B + cost_drug",utility=1)
C <- health_state("C", cost="cost_health_C + cost_drug",utility=1)
D <- health_state("D", cost=0,utility=0)
tmat <- rbind(c(1, 2,3,4), c(NA, 5,6,7),c(NA, NA, 8,9), c(NA,NA,NA,10))
colnames(tmat) <- rownames(tmat) <- c("A","B" ,"C","D")
tm <- transition_matrix(4, tmat, c("tpAtoA","tpAtoB","tpAtoC","tpAtoD",
"tpBtoB", "tpBtoC", "tpBtoD",
"tpCtoC","tpCtoD","tpDtoD" ), colnames(tmat) )
param_list<-define_parameters(cost_zido = 2278,
cost_direct_med_A = 1701,
cost_comm_care_A = 1055,
cost_direct_med_B = 1774,
cost_comm_care_B = 1278,
cost_direct_med_C = 6948,
cost_comm_care_C = 2059,
tpAtoA = 1251/(1251+483),
tpAtoB = 350/(350+1384),
tpAtoC = 116/(116+1618),
tpAtoD = 17/(17+1717),
tpBtoB = 731/(731+527),
tpBtoC = 512/(512+746),
tpBtoD = 15/(15+1243),
tpCtoC = 1312/(1312+437),
tpCtoD = 437/(437+1312),
tpDtoD = 1,
cost_health_A = "cost_direct_med_A+ cost_comm_care_A",
cost_health_B = "cost_direct_med_B+ cost_comm_care_B",
cost_health_C = "cost_direct_med_C+ cost_comm_care_C",
cost_drug = "cost_zido")
health_states <- combine_state(A,B,C,D)
mono_strategy <- strategy(tm, health_states, "mono")
mono_markov <-markov_model(mono_strategy, 20, c(1, 0,0,0),c(0,0,0,0),discount=c(0.06,0),param_list)
min_values<-define_parameters(cost_direct_med_B = 177.4,cost_comm_care_C = 205.9)
max_values<-define_parameters(cost_direct_med_B = 17740,cost_comm_care_C = 20590)
param_table<-define_parameters_sens_anal(param_list, min_values, max_values)
result_dsa_control<-do_sensitivity_analysis(mono_markov,param_table)
plot_dsa(result_dsa_control,"cost")
#Define function to set the cost to be differnt for first two cycles
define_comb_cost=function(cycle,cost_lami){
if(cycle==2 || cycle ==3)
return(cost_lami)
else
return(0)
}
#Define function to set the risk ratio to be differnt for first two cycles
define_rr=function(cycle,rr){
if(cycle==2 || cycle ==3)
return(rr)
else
return(1)
}
A <- health_state("A", cost="cost_health_A + cost_drug",utility=1)
B <- health_state("B", cost="cost_health_B + cost_drug",utility=1)
C <- health_state("C", cost="cost_health_C + cost_drug",utility=1)
D <- health_state("D", cost=0,utility=0)
tmat <- rbind(c(1, 2,3,4), c(NA, 5,6,7),c(NA, NA, 8,9), c(NA,NA,NA,10))
colnames(tmat) <- rownames(tmat) <- c("A","B" ,"C","D")
tm <- transition_matrix(4, tmat, c("tpAtoA_rr","tpAtoB_rr","tpAtoC_rr","tpAtoD_rr",
"tpBtoB_rr", "tpBtoC_rr", "tpBtoD_rr",
"tpCtoC_rr","tpCtoD_rr","tpDtoD_rr" ), colnames(tmat) )
health_states <- combine_state(A,B,C,D)
#The current strategy ie. control or intervention - here it is combination therapy
comb_strategy <- strategy(tm, health_states, "comb")
param_list<-define_parameters(cost_zido = 2278,
cost_direct_med_A = 1701,
cost_comm_care_A = 1055,
cost_direct_med_B = 1774,
cost_comm_care_B = 1278,
cost_direct_med_C = 6948,
cost_comm_care_C = 2059,
tpAtoA = 1251/(1251+483),
tpAtoB = 350/(350+1384),
tpAtoC = 116/(116+1618),
tpAtoD = 17/(17+1717),
tpBtoB = 731/(731+527),
tpBtoC = 512/(512+746),
tpBtoD = 15/(15+1243),
tpCtoC = 1312/(1312+437),
tpCtoD = 437/(437+1312),
tpDtoD = 1,
rr=0.509,
cost_lami = 2086.50,
rr_cycle="define_rr(markov_cycle,rr)",
tpAtoA_rr="1-tpAtoB*rr_cycle-tpAtoC*rr_cycle-tpAtoD*rr_cycle",
tpAtoB_rr="tpAtoB*rr_cycle",
tpAtoC_rr="tpAtoC*rr_cycle",
tpAtoD_rr="tpAtoD*rr_cycle",
tpBtoB_rr="1-tpBtoC*rr_cycle-tpBtoD*rr_cycle",
tpBtoC_rr="tpBtoC*rr_cycle",
tpBtoD_rr="tpBtoD*rr_cycle",
tpCtoC_rr="1-tpCtoD*rr_cycle",
tpCtoD_rr="tpCtoD*rr_cycle",
tpDtoD_rr=1,
cost_health_A = "cost_direct_med_A + cost_comm_care_A",
cost_health_B = "cost_direct_med_B + cost_comm_care_B",
cost_health_C = "cost_direct_med_C + cost_comm_care_C",
cost_lami_cycle = "define_comb_cost(markov_cycle,cost_lami)",
cost_drug = "cost_zido + cost_lami_cycle")
comb_markov <-markov_model(comb_strategy, 20, c(1, 0,0,0),c(0,0,0,0),discount=c(0.06,0.0),param_list)
min_values<-define_parameters(cost_direct_med_B = 177.4,cost_comm_care_C = 205.9)
max_values<-define_parameters(cost_direct_med_B = 17740,cost_comm_care_C = 20590)
param_table<-define_parameters_sens_anal(param_list, min_values, max_values)
result_dsa_treat<-do_sensitivity_analysis(comb_markov,param_table)
plot_dsa(result_dsa_control,"cost_direct_med_B",type="range")
plot_dsa(result_dsa_control,"utility",type="range",result_dsa_treat,threshold=1000, comparator="mono")
plot_dsa(result_dsa_control,"cost",type="difference",result_dsa_treat,threshold=1000, comparator="mono")
plot_dsa(result_dsa_control,"NMB",type="range",result_dsa_treat,threshold=1000, comparator="mono")
report_sensitivity_analysis(result_dsa_control,result_dsa_treat,1000,"mono")
##################Test for PSA
A <- health_state("A", cost = "cost_health_A+ cost_drug", utility = 1)
B <- health_state("B", cost = "cost_health_B + cost_drug", utility = 1)
C <- health_state("C", cost = "cost_health_C + cost_drug", utility = 1)
D <- health_state("D", cost = 0,utility = 0)
tmat <- rbind(c(1, 2,3,4), c(NA, 5,6,7),c(NA, NA, 8,9), c(NA,NA,NA,10))
colnames(tmat) <- rownames(tmat) <- c("A","B" ,"C","D")
tm <- transition_matrix(4, tmat, c("tpAtoA","tpAtoB","tpAtoC","tpAtoD",
"tpBtoB", "tpBtoC", "tpBtoD",
"tpCtoC","tpCtoD","tpDtoD" ), colnames(tmat) )
mono_param_list <- define_parameters(cost_zido = 2278,
cost_direct_med_A = 1701,
cost_comm_care_A = 1055,
cost_direct_med_B = 1774,
cost_comm_care_B = 1278,
cost_direct_med_C = 6948,
cost_comm_care_C = 2059,
tpAtoA = 1251/(1251 + 483),
tpAtoB = 350/(350 + 1384),
tpAtoC = 116/(116 + 1618),
tpAtoD = 17/(17 + 1717),
tpBtoB = 731/(731 + 527),
tpBtoC = 512/(512 + 746),
tpBtoD = 15/(15 + 1243),
tpCtoC = 1312/(1312 + 437),
tpCtoD = 437/(437 + 1312),
tpDtoD = 1,
cost_health_A = "cost_direct_med_A+ cost_comm_care_A",
cost_health_B = "cost_direct_med_B+ cost_comm_care_B",
cost_health_C = "cost_direct_med_C+ cost_comm_care_C",
cost_drug = "cost_zido")
health_states <- combine_state(A,B,C,D)
mono_strategy <- strategy(tm, health_states, "mono")
mono_markov <- markov_model(mono_strategy, 20, c(1, 0,0,0),c(0,0,0,0),discount = c(0.06,0), param_list)
#Define function to set the cost to be differnt for first two cycles
define_comb_cost = function(cycle,cost_lami){
if (cycle == 2 || cycle == 3)
return(cost_lami)
else
return(0)
}
#Define function to set the risk ratio to be differnt for first two cycles
define_rr = function(cycle,rr){
if (cycle == 2 || cycle == 3)
return(rr)
else
return(1)
}
A <- health_state("A", cost="cost_health_A + cost_drug",utility = 1)
B <- health_state("B", cost="cost_health_B + cost_drug",utility = 1)
C <- health_state("C", cost="cost_health_C + cost_drug",utility = 1)
D <- health_state("D", cost=0,utility=0)
tmat <- rbind(c(1, 2,3,4), c(NA, 5,6,7),c(NA, NA, 8,9), c(NA,NA,NA,10))
colnames(tmat) <- rownames(tmat) <- c("A","B" ,"C","D")
tm <- transition_matrix(4, tmat, c("tpAtoA_rr","tpAtoB_rr","tpAtoC_rr","tpAtoD_rr",
"tpBtoB_rr", "tpBtoC_rr", "tpBtoD_rr",
"tpCtoC_rr","tpCtoD_rr","tpDtoD_rr" ), colnames(tmat) )
health_states <- combine_state(A,B,C,D)
#The current strategy ie. control or intervention - here it is combination therapy
comb_strategy <- strategy(tm, health_states, "comb")
comb_param_list <- define_parameters(cost_zido = 2278,
cost_direct_med_A = 1701,
cost_comm_care_A = 1055,
cost_direct_med_B = 1774,
cost_comm_care_B = 1278,
cost_direct_med_C = 6948,
cost_comm_care_C = 2059,
tpAtoA = 1251/(1251 + 483),
tpAtoB = 350/(350 + 1384),
tpAtoC = 116/(116 + 1618),
tpAtoD = 17/(17 + 1717),
tpBtoB = 731/(731 + 527),
tpBtoC = 512/(512 + 746),
tpBtoD = 15/(15 + 1243),
tpCtoC = 1312/(1312 + 437),
tpCtoD = 437/(437 + 1312),
tpDtoD = 1,
rr = 0.509,
cost_lami = 2086.50,
rr_cycle = "define_rr(markov_cycle,rr)",
tpAtoA_rr = "1-tpAtoB*rr_cycle-tpAtoC*rr_cycle-tpAtoD*rr_cycle",
tpAtoB_rr = "tpAtoB*rr_cycle",
tpAtoC_rr = "tpAtoC*rr_cycle",
tpAtoD_rr = "tpAtoD*rr_cycle",
tpBtoB_rr = "1-tpBtoC*rr_cycle-tpBtoD*rr_cycle",
tpBtoC_rr = "tpBtoC*rr_cycle",
tpBtoD_rr = "tpBtoD*rr_cycle",
tpCtoC_rr = "1-tpCtoD*rr_cycle",
tpCtoD_rr = "tpCtoD*rr_cycle",
tpDtoD_rr = 1,
cost_health_A = "cost_direct_med_A + cost_comm_care_A",
cost_health_B = "cost_direct_med_B + cost_comm_care_B",
cost_health_C = "cost_direct_med_C + cost_comm_care_C",
cost_lami_cycle = "define_comb_cost(markov_cycle,cost_lami)",
cost_drug = "cost_zido + cost_lami_cycle")
comb_markov <- markov_model(comb_strategy, 20, c(1, 0,0,0), c(0,0,0,0),discount = c(0.06,0.0), param_list)
sample_list <- define_parameters(cost_zido = "gamma(mean = 2756, sd = sqrt(2756))")
param_table_mono <- define_parameters_psa(mono_param_list, sample_list)
param_table_combo <- define_parameters_psa(comb_param_list,sample_list)
result_psa_mono = do_psa(mono_markov,param_table_mono,3)
result_psa_comb = do_psa(comb_markov,param_table_combo,3)
list_result_psa_mono <- list_paramwise_psa_result(result_psa_mono,NULL,NULL,NULL)
list_result_psa_comb <- list_paramwise_psa_result(result_psa_comb,NULL,NULL,NULL)
list_all <- list_paramwise_psa_result(result_psa_mono,result_psa_comb,1000,"mono")
summary_plot_psa(result_psa_mono,NULL,NULL,NULL)
summary_plot_psa(result_psa_comb,NULL,NULL,NULL)
summary_plot_psa(result_psa_mono,result_psa_comb,1000,"mono")
####################################PARAmeter estimation tests
# dataset <- read.csv("patient_m_riskscore.csv")
#
# glm_estimation<-get_parameter_estimated("ccindex", dataset, "logistic regression", "treat",
# info_get_method=NA, info_distribution="binomial", covariates=c("as.numeric(as.character(agegrp0))", "agrade"))
#
# covariates=c("as.numeric(as.character(agegrp0)) ", "diabmell" , "prevmi", "smoker", "pulse", "stdepres","agrade","sex",
# "leftbund" , "cluster(studyno)")
#
# debug(get_parameter_estimated)
# surv_estimation<-get_parameter_estimated("cvdmi", this_dataset, "survival analysis", "treat",
# info_get_method="PH", info_distribution="weibull", covariates=covariates, NA,NA,"follow")
# logistic regression example
mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
mydata$rank <- factor(mydata$rank)
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
results_logit <- get_parameter_estimated_regression("admit", dataset=mydata,method="logistic regression",
indep_var = "gre", info_get_method = NA,info_distribution ="binomial", covariates = c("gpa", "factor(rank)"),
strategycol = NA,strategyname = NA, timevar_survival =NA)
# Survival analysis kaplan meier example
# use the data from aml in package survival
data_for_survival<-survival::aml
surv_estimated_aml<-get_parameter_estimated_regression("status", data_for_survival, "survival analysis", "x",
info_get_method="Kaplan-Meier", info_distribution=NA, covariates=NA, NA,NA,"time")
# Parametric survival analysis cox ph example
surv_estimated_aml <- get_parameter_estimated_regression("status", data_for_survival, "survival analysis", "1",
info_get_method="parametric regression", info_distribution="weibull", covariates=NA, NA,NA,"time")
# Survival analysis cox ph example
data_for_coxph<-survival::lung
surv_estimated_coxph<-get_parameter_estimated_regression("status", data_for_coxph, "survival analysis", "sex",
info_get_method="cox-ph", info_distribution=NA, covariates=c("age","ph.ecog"), NA,NA,"time")
# Survival analysis KM example
surv_estimated_km<-get_parameter_estimated_regression("status", data_for_coxph, "survival analysis", "sex",
info_get_method="km", info_distribution=NA, covariates=NA, NA,NA,"time")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.