R/Dcoef.R

Defines functions Dcoef

Documented in Dcoef

## Dcoef-methods
##' @name Dcoef
##' @aliases Dcoef
##' @title Dcoef
##' @rdname Dcoef-methods
##' @docType methods
##' @description Caclulate diffusion coefficient (Dcoef) for trajecotries.
##'
##' @usage
##' Dcoef( MSD=NULL,trackll=NULL,dt=6,filter=c(min=7,max=Inf),rsquare=0.8,
##'        resolution=0.107,binwidth=NULL,method=c("static","percentage",
##'        "rolling.window"),plot=FALSE,output=FALSE,t.interval=0.01,
##'        profile=NULL)
##' @param MSD Mean Square Displacement calculated using msd() function. 
##' Either MSD or trackll can be passed into Dcoef for calculation of diffusion
##' coefficient.
##' @param trackll Track list output from readDiatrack().
##' @param dt Time intervals. Default 6.
##' @param filter a vector specifies the minimum and max length of trajecotries
##'   to be analyzed. Take only trajectories that has number of frames greater
##'   than (>=) min and less than (<) max.
##' @param rsquare rsquare filter on Dcoef results. Default to be 0.8. Set 
##' value to 0 if rsquare filter is not desired.
##' @param resolution ratio of pixel to uM.
##' @param plot A parameter for plotting. Default FALSE, no plot; If TRUE,
##'   automatically plots 'histogram' with count information, binwidth can be
##'   set through parameter binwidth; as well as 'density' with
##'   density/frequency.
##' @param binwidth binwidth used for histogram. Default NULL, automatically
##'   assign binwidth.
##' @param method "static", uses time lags 2~5 to calculate diffusion
##'   coefficient; "percentage", uses (tierd) percentage (default 0.25) of time
##'   lags (see Details). "rolling.window", time lags uses for Dcoef follows a
##'   rolling window with specified window size (default 4).
##' @param output An Logical indicate if output should be generated. See Values
##'   for detail.
##' @param t.interval time interval between frames, default 0.010 s (10ms).
##' @param profile Location of preference file. By default (NULL), it is stored
##'   at : system.file("extdata","PREF","profile.csv",package="sojourner").
##'   User can provide preference file by specifying the location of the file, 
##'   e.g. profile="/Users/shengliu/Desktop/profile.csv".
##'
##' @return
##' \itemize{
##' \item \emph{Dcoef} A list of Dcoef for each file in trackll.
##' \item \emph{PDF} Log.Dcoef histogram fitted with density curve,
##'  when plot = TRUE.
##' \item \emph{csv} Dcoef output in csv format, when output = TRUE.
##' }
##' @details Generic parameters (parameter applied to all methods, such as
##'   resolution etc) are set in the function. Method dependent parameters (such
##'   as lag.start, lag.end for method = "static"), are stored in profile.csv in
##'   PREF folder under extdata. To change preference parameter, can either
##'   programably or manually go to folder
##'   system.file("extdata","PREF","profile.csv",package="sojourner"), and c
##'   hange the profile.csv.
##' 
##' lag.start: time lag used as start of dt for compute Dcoef. Default 2.
##'
##' lag.end: Time lag used as end of dt for compute Dcoef. Default 2.
##'
##' method for calculating Dcoef:
##' \itemize{
##'     \item \bold{static} stabilize the number of time lags used for fitting
##'     using time lag 2~ 5 despite the total time lags measured.
##'     \item \bold{percentage} "percentage", uses (tierd) percentage (default
##'     0.25) of time lags.
##' \tabular{rlll}{
##'     [,1] \tab TrackLength \tab Percentage \tab TimeLagsForFitting\cr
##'     [,2] \tab 31~ \tab 0.25 \tab 2~5-2~7\cr
##'     [,3] \tab 22~30 \tab 0.25 \tab 2~5-2~7\cr
##'     [,4] \tab 15~21 \tab 0.4 \tab 2~5-2~7\cr
##'     [,5] \tab 10~15 \tab 0.6 \tab 2~5-2~7\cr
##'     [,6] \tab 7~9 \tab 1 \tab 2~5-2~7
##' }
##'
##'     \item \bold{rolling.window}  time lags uses for Dcoef follows a rolling
##'     window with specified window size (default 4).
##'}


##'
##' @examples
##' # compare files
##' folder=system.file("extdata",'SWR1',package="sojourner")
##' trackll = createTrackll(folder=folder, input=3)
##' MSD=msd(trackll=trackll)
##' Dcoef(MSD=MSD,method="static",plot=TRUE)
##'
##' # compare folders
##' folder1=system.file("extdata",'SWR1',package="sojourner")
##' folder2=system.file("extdata",'HTZ1',package="sojourner")
##' trackll2=compareFolder(folders=c(folder1,folder2), input=3)
##' Dcoef(trackll=trackll2,method="percentage",plot=TRUE)
##' Dcoef(trackll=trackll2,method="rolling.window",plot=TRUE)


##' @export Dcoef
############################################################################### 

# Dcoef (Diffusion coefficient)


Dcoef = function(MSD = NULL, trackll = NULL, dt = 6, 
    filter = c(min = 7, max = Inf), rsquare = 0.8, resolution = 0.107, 
    binwidth = NULL, method = c("static", "percentage", "rolling.window"), 
    plot = FALSE, output = FALSE, t.interval = 0.01, profile = NULL) {
    
    
    ##--------------------------------------------------------------------------
    # validity check for input
    
    # if neither MSD or trackll is provided
    if (length(MSD) == 0 & length(trackll) == 0) {
        stop("\nPlease provide either MSD or trackll")
    }
    
    method = match.arg(method)
    
    # if select percentage method but original trackll is not provided
    if (method == "percentage" & length(trackll) == 0) {
        stop("\nPlease provide 'trackll' when using percentage method")
    }
    
    ## set corresponding switches
    
    ## read in preference parameters these are some method dependent parameters,
    ## the generic parameters (parameter applied to all methods) are set in the
    ## function
    
    ## enable user provided preference file
    if (is.null(profile)) {
        profile = system.file("extdata", "PREF", "profile.csv", 
            package = "sojourner")
    }
    
    PARAM = read.csv(file = profile, header = TRUE, row.names = "PARAMETER")
    lag.start = PARAM["lag.start", ]
    lag.end = PARAM["lag.end", ]
    perc = PARAM["percentage", ]
    window.size = PARAM["window.size", ]
    
    
    # dispatch on 'method'
    switch(method, static = {
        cat("\napplying static,lag.start=", lag.start, "\t", "lag.end=", 
            lag.end, "\n")
        static = TRUE
        lag.start = lag.start
        lag.end = lag.end
        
        
        # if MSD is not provided
        if (length(MSD) == 0) {
            # calculate MSD
            MSD = msd(trackll, dt = dt, resolution = resolution, 
                filter = filter, summarize = FALSE)
        }
        # default using MSD if trackll and MSD both present
        
        # calculate Dcoef using static
        D.coef = Dcoef.static(MSD, lag.start = lag.start, lag.end = lag.end, 
            t.interval = t.interval)
    }, rolling.window = {
        cat("\napplying rolling window...\n")
        static = FALSE
        window.size = window.size
        
        # if MSD is not provided
        if (length(MSD) == 0) {
            # calculate MSD
            MSD = msd(trackll, dt = dt, resolution = resolution, 
                filter = filter, summarize = FALSE)
        }
        # default using MSD if trackll and MSD both present
        
        
        # calculate Dcoef using rolling window
        D.coef = Dcoef.roll(MSD, window.size = window.size, 
            t.interval = t.interval)
    }, percentage = {
        static = TRUE
        D.coef = Dcoef.perc(trackll, percentage = perc, weighted = FALSE, 
            filter = filter, resolution = resolution, t.interval = t.interval)
        
    })
    
    # if (plot == 'variance'){ ## currently set rollingwindow only for
    # variance plot cat( '\nvariance = TRUE, applying rolling window,
    # filter swtiched on\n') rolling.window=TRUE filter=TRUE }else{
    # rolling.window=FALSE }
    
    ##--------------------------------------------------------------------------
    ## call corresponding functions
    
    # if (rolling.window == TRUE){ D.coef=Dcoef.roll(MSD,dt=dt)
    # D.coef.subset=rsquare.filter(D.coef,static=FALSE)
    # Log.D.coef=Dcoef.log(D.coef.subset,static=FALSE) }else{
    # D.coef=Dcoef.static(MSD)
    # D.coef.subset=rsquare.filter(D.coef,static=TRUE)
    # Log.D.coef=Dcoef.log(D.coef.subset,static=TRUE) }
    
    # if (length(rsquare)!=0){
    # D.coef.subset=rsquare.filter(D.coef,rsquare=rsquare,static=static)
    # }else{ D.coef.subset=D.coef }
    
    # further process dispatch on method
    
    if (method == "static" || method == "percentage") {
        
        # subset
        D.coef.subset = rsquare.filter(D.coef, rsquare = rsquare)
        D.coef.subset.slope = lapply(D.coef.subset, function(x) {
            x[, "slope"]
        })
        
        # logorithm
        Log.D.coef = lapply(D.coef.subset.slope, log10)
        
    } else if (method == "rolling.window") {
        # subset
        D.coef.subset = rsquare.filter.roll(D.coef, rsquare = rsquare)
        D.coef.subset.slope = lapply(D.coef.subset, function(x) {
            for (i in seq_along(x)) {
                x[[i]] = x[[i]][, "slope"]
            }
            return(x)
        })
        
        ## logorithm
        Log.D.coef = lapply(D.coef.subset.slope, function(x) {
            for (i in seq_along(x)) {
                x[[i]] = log10(x[[i]])
            }
            return(x)
        })
        
        # simpler than reverse setup Log.D.coef=list() for (i in
        # seq_along(D.coef.subset.slope)){ Log.D.coef[[i]]=lapply(
        # D.coef.subset.slope[[i]],log10) }
        # names(Log.D.coef)=names(D.coef.subset.slope) return(Log.D.coef)
        
    }
    
    ##--------------------------------------------------------------------------
    ## plot
    
    if (plot == TRUE) {
        
        cat("\nPlotting histogram...\n")
        # see count inforamtion
        histogram = plotHistogram(Log.D.coef, binwidth = binwidth, 
            method = method)
        
        cat("\nPlotting density...\n")
        # plot frequency so it is easier to compare groups
        density = plotDensity(Log.D.coef, binwidth = binwidth, method = method)
        
    }
    
    # plot=match.arg(plot) switch(plot, variance={ if (method ==
    # "static"||method == "percentage"){ cat(paste('\n\nvariance plot for
    # method static', 'and percentage not available for sojourner
    # v0.2\n\n')) # cat(paste('variance plot for method static', 'and
    # percentage does not use rsquare filter. \n')) #
    # Log.D.coef.nofilter=Dcoef.log(D.coef,static=TRUE) #
    # plotVariance(Log.D.coef.nofilter,method=method) }else{
    # plotVariance(Log.D.coef,method=method)} }, ## needs more work to deal
    # with a list # see count inforamtion
    # histogram=plotHistogram(Log.D.coef, binwidth=binwidth,method=method),
    # # plot frequency so it is easier to compare groups
    # density=plotDensity(Log.D.coef,binwidth=binwidth,method=method) #
    # else do nothing )
    
    ##--------------------------------------------------------------------------
    ## output
    
    if (output == TRUE) {
        # output csv
        for (i in seq_along(trackll)) {
            fileName = paste("Dcoef-", .timeStamp(names(trackll)[i]), ".csv", 
                sep = "")
            write.csv(file = fileName, D.coef.subset[[i]])
        }
    }
    
    return(invisible(D.coef.subset))
    # if no subsetting is intended, select rsquare=0
}
sheng-liu/smt-beta-0.3.9.1 documentation built on April 2, 2021, 1:38 a.m.