Description Fitting methods Approximation methods
The package uses as input a data frame of parameter values theta and corresponding evaluations of an unnormalised probability density function f(theta), as is a common situation in Bayesian inference problems. By interpolating the target density using Gaussian kernels, the normalisation constant, as well as marginal densities and expectations can be approximated.
doit_estimate_w obtains the optimal width of the Gaussian interpolation kernels by cross validation.
doit_fit estimates the parameters for the DoIt approximation
doit_update updates a fitted DoIt approximation by a new parameter value and function evaluation.
doit_approx evaluates the DoIt approximation at different parameter values
doit_marginal approximates the marginal distribution
doit_marginal_A approximates the marginal distribution of a linear transformation of the inputs
doit_expectation and doit_variance approximate expectation and variance
doit_integral approximates the integral under the unnormalised density
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.