doit_propose_new: Propose a new design point for the DoIt approximation

Description Usage Arguments Value Examples

Description

Find the point with largest estimation variance by numerical optimisation, using the current design point with largest leave-one-out prediction error as the starting point.

Usage

1

Arguments

doit

An object of class 'doit', see function 'doit_fit'.

theta_0

Data frame or vector. Initial value used by the optimisation routine. Ignored for 1d problems.

Value

A parameter value.

Examples

1
2
3
4
design = data.frame(x=rnorm(10), y=rnorm(10))
design$f = with(design, exp(-0.5*(x+y)^2))
fit = doit_fit(design)
theta_new = doit_propose_new(fit)

sieste/doit documentation built on May 9, 2019, 4:10 p.m.