Description Usage Arguments Value Examples
Approximate the marginal density of a linear transformation 'A
1 | doit_marginal_A(doit, A = NULL, theta_eval = NULL)
|
doit |
An object of class 'doit', see function 'doit_fit'. |
A |
The transformation matrix. |
theta_eval |
Evaluation points at which to apply the linear transformation and then approximate the marginal distribution. If 'NULL' (the default) the original design points are used. |
A data frame of the transformed evaluation points and the corresponding DoIt approximation of the marginal density.
1 2 3 4 5 | design = data.frame(x=rnorm(10), y=rnorm(10))
design$f = with(design, exp(-0.5*(x+y)^2))
fit = doit_fit(design)
# distribution of x + y
mar_xpy = doit_marginal_A(fit, A=matrix(c(1,1), 1, 2))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.