#' Get indices of parameters in working vector
#'
#' This function finds the indices for each parameter of the normal HMM within
#' the vector of working parameters outputted by `norm_working_params()`.
#'
#' @param num_states The number of states in the desired HMM.
#' @param num_variables The number of variables in the data.
#' @param num_subjects The number of subjects/trials that generated the data.
#' @param num_covariates The number of covariates in the data that the
#' transition probability matrix depends on.
#' @param state_dep_dist_pooled A logical variable indiacting whether the
#' state dependent distribution parameters `mu` and `sigma` should be
#' treated as equal for all subjects.
#'
#' @return A list of the start and end indices.
#' @export
norm0_working_ind <- function(num_states, num_variables, num_subjects,
num_covariates, state_dep_dist_pooled = FALSE) {
mu_start <- 1
mu_end <- num_states*num_variables*num_subjects
sigma_end <- mu_end + num_states*num_variables*num_subjects
zweight_end <- sigma_end + num_subjects*num_variables
mu_len <- sigma_len <- num_subjects*num_states
zweight_len <- num_variables*num_subjects
if (state_dep_dist_pooled) {
mu_end <- num_states*num_variables
sigma_end <- mu_end + num_states*num_variables
zweight_end <- sigma_end + num_variables
mu_len <- sigma_len <- num_states
zweight_len <- num_variables
}
sigma_start <- mu_end + 1
zweight_start <- sigma_end + 1
beta_start <- zweight_end + 1
beta_end <- zweight_end + (num_states^2 - num_states)*(num_covariates + 1)
delta_start <- beta_end + 1
delta_end <- delta_start + num_states - 2
list(mu_start = mu_start,
mu_end = mu_end,
mu_len = mu_len,
sigma_start = sigma_start,
sigma_end = sigma_end,
sigma_len = sigma_len,
beta_start = beta_start,
beta_end = beta_end,
delta_start = delta_start,
delta_end = delta_end)
}
#' Transform normal HMM parameters from working to natural
#'
#' This function transforms the working normal HMM parameters back into the
#' original format of the natural parameters and outputs them as a list. This
#' function is the reverse of `norm_working_params()`.
#'
#' @param num_states The number of states in the desired HMM.
#' @param num_variables The number of variables in the data.
#' @param num_subjects The number of subjects/trials that generated the data.
#' @param num_covariates The number of covariates in the data that the
#' transition probability matrix depends on.
#' @param working_params A vector of the working normal parameters for the
#' HMM as outputted by `norm_working_params()`.
#' @param state_dep_dist_pooled A logical variable indicating whether the
#' state dependent distribution parameters `mu` and `sigma` should be
#' treated as equal for all subjects.
#'
#' @return A list of the natural parameters.
#' @export
norm0_natural_params <- function(num_states, num_variables, num_subjects,
num_covariates, working_params,
state_dep_dist_pooled = FALSE) {
ind <- norm_working_ind(num_states, num_variables, num_subjects,
num_covariates, state_dep_dist_pooled = FALSE)
mu <- split_vec(working_params, ind$mu_start, ind$mu_end, ind$mu_len)
sigma <- split_vec(working_params, ind$sigma_start, ind$sigma_end,
ind$sigma_len, exp = TRUE)
for (j in 1:num_variables) {
mu[[j]] <- matrix(mu[[j]], ncol = num_states, byrow = TRUE)
sigma[[j]] <- matrix(sigma[[j]], ncol = num_states, byrow = TRUE)
}
beta <- matrix(working_params[ind$beta_start:ind$beta_end],
nrow = num_states^2 - num_states)
delta <- list()
if (num_states == 1) {
for (i in 1:num_subjects) {
delta[[i]] = 1
return(list(mu = mu, sigma = sigma, gamma = gamma, delta = delta))
}
}
d <- split_vec(working_params, ind$delta_start, ind$delta_end, num_states - 1)
for (i in 1:num_subjects) {
foo <- c(1, exp(d[[i]]))
delta[[i]] <- foo/sum(foo)
}
list(mu = mu, sigma = sigma, beta = beta, delta = delta)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.