Description Usage Arguments Details Value See Also Examples
Estimate allocation suitability with predictive models.
1 2 3 | ## S3 method for class 'PredictiveModelList'
predict(object, newdata,
data.frame = FALSE, ...)
|
object |
a PredictiveModelList object |
newdata |
data.frame containing new data |
data.frame |
logical indicating whether the function should return a matrix (default) or data.frame |
... |
additional arguments to |
This function is usually called from allocate
to calculate land use
suitability at each timestep. However, it may also be used to produce
suitability maps (see examples).
A matrix.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | ## Not run:
## Plum Island Ecosystems
lu <- DiscreteLulcRasterStack(x=stack(pie[1:3]),
categories=c(1,2,3),
labels=c("Forest","Built","Other"),
t=c(0,6,14))
idx <- data.frame(var=c("ef_001","ef_002","ef_003"),
yr=c(0,0,0),
dynamic=c(FALSE,FALSE,FALSE))
ef <- ExpVarRasterStack(x=stack(pie[4:6]), index=idx)
part <- partition(x=lu, size=0.1, spatial=TRUE, t=0)
train.data <- getPredictiveModelInputData(lu=lu,
ef=ef,
cells=part[["train"]],
t=0)
forest.form <- as.formula("Forest ~ ef_001 + ef_002")
built.form <- as.formula("Built ~ ef_001 + ef_002 + ef_003")
other.form <- as.formula("Other ~ ef_001 + ef_002")
forest.glm <- glm(forest.form, family=binomial, data=train.data)
built.glm <- glm(built.form, family=binomial, data=train.data)
other.glm <- glm(other.form, family=binomial, data=train.data)
glm.mods <- PredictiveModelList(list(forest.glm, built.glm, other.glm),
categories=lu@categories,
labels=lu@labels)
all.data <- as.data.frame(x=ef, cells=part[["all"]])
probmaps <- predict(object=glm.mods,
newdata=all.data,
data.frame=TRUE)
points <- rasterToPoints(lu[[1]], spatial=TRUE)
probmaps <- SpatialPointsDataFrame(points, probmaps)
probmaps <- rasterize(x=probmaps, y=lu[[1]],
field=names(probmaps))
plot(probmaps)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.