#' Load global data
#' @author Simon P Castillo \email{spcastil@@uc.cl}.
#' @description Load global data of SARS_CoV-2. This function obtain data from [CSSEGI-Johns Hopkins]{(https://github.com/CSSEGISandData/COVID-19} and it is built from other repos. [like this]{https://github.com/DrFabach/Corona}
#' @examples load_globalCOVID()
#' @return This function returns different objects to your Global Environment.
#' @return data_deaths: dataframe. The number of global deaths by day due to COVID.
#' @return data_positives: dataframe. The number of SARS-CoV-2(+).
#' @return data_recovered: dataframe. The number of recovered from SARS-CoV-2(+).
#' @return inc_matrix: dataframe. The global active cases by country and day.
#' @return propab_matrix: dataframe The global active cases/country population by country and day.
#' @return inc_df: dataframe. A three column dataframe with country, date and the number of active cases.
#' @return propab_df: dataframe. A three column dataframe with country, date and the proportional abundance of active cases.
#' @return sumCases: numeric vector. The global sum of SARS-CoV-2(+) by day.
#' @return avCases: numeric vector. The global average of SARS-CoV-2(+) by day.
#'
#'
#'
load_globalCOVID <- function(){
pacman::p_load(reshape2,tidyverse, rgdal, RCurl, magrittr)
#'%ni%' <- Negate('%in%')
# World shapefile
#download.file(url="https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/cultural/ne_50m_admin_0_countries.zip",
# destfile = "data/ne_50m_admin_0_countries.zip")
#unzip(zipfile = "data/ne_50m_admin_0_countries.zip",exdir = "data" )
#countries <- readOGR("data/ne_50m_admin_0_countries.shp",encoding = "utf-8",use_iconv = T, verbose = FALSE)
#save(countries, file="data/shapeFile.RData")
load("data/shapeFile.RData")
source('R/dataCook.R')
# World population
download.file(url = "https://raw.githubusercontent.com/DrFabach/Corona/master/pop.csv", destfile = "data/pop.csv")
population<- read.csv2("data/pop.csv",stringsAsFactors = F)
population$pays<-as.character(unique(countries$NAME)[charmatch(population$Country,unique(countries$NAME))])
# World coronavirus records
download.file ("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv",
destfile = "data/confirmed.csv")
download.file ("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv",
destfile = "data/deaths.csv")
download.file ("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv",
destfile = "data/recovered.csv")
confirmed <- read.csv("data/confirmed.csv", check.names = F)
deaths <- read.csv("data/deaths.csv", check.names = F)
recovered <- read.csv("data/recovered.csv", check.names = F)
dataCases<- dataCook(deaths, population, countries) # correct country names
po= population[complete.cases(population),]
names(po) = c(names(po)[1:2], "Pays")
po$Country= NULL
df_d = merge(po, dataCases, by="Pays")
data_deaths <<- df_d
dataCases<- dataCook(confirmed, population, countries) # correct country names
po= population[complete.cases(population),]
names(po) = c(names(po)[1:2], "Pays")
po$Country= NULL
df_p = merge(po, dataCases, by="Pays")
data_positives <<- df_p
dataCases<- dataCook(recovered, population, countries) # correct country names
po= population[complete.cases(population),]
names(po) = c(names(po)[1:2], "Pays")
po$Country= NULL
df_r = merge(po, dataCases, by="Pays")
data_recovered <<- df_r
coles = ncol(df_p)
#View(dataCases[dataCases$Pays %ni% df0$Pays,])
Pays= df_r$Pays
pop= df_r$Population
d0 = df_p[,3:ncol(df_p)]-df_r[,3:ncol(df_r)]-df_d[,3:ncol(df_d)]
df0 = data.frame(Pays= Pays, Population=pop, d0)
names(df0) = names(df_p)
for (i in 1:nrow(df0)) {
popCountry = df0$Population[i]
for(j in 3:(coles)){
sumDay = sum(df0[,j])
df0[i,(coles+j-2)] = df0[i,j]/sumDay
}
}
df0b = df0[,c(1,3:coles)] ### temporal series of number of infected
Ncases = colSums(df0[,c(3:coles)])
Mcases = colSums(df0[,c(3:coles)])/colSums(df0[,c(3:coles)]>0)
df1 = df0[, c(1, (coles+1):ncol(df0))] ### temporal series of proportional abundance of infected
names(df0b) = names(df1) = names(df0)[c(1,3:coles)]
df2 = melt(df1, id="Pays") # proportional abundance
names(df2) = c("Country", "Day", "propAb")
df2$date = as.Date(df2$Day, "%m/%d/%y")
df2b = melt(df0b, id="Pays") # raw abundance
names(df2b) = c("Country", "Day", "Incidence")
df2b$date = as.Date(df2b$Day, "%m/%d/%y")
inc_matrix <<- df0b
propab_matrix <<- df1
inc_df <<- df2b
propab_df <<- df2
sumCases <<- Ncases
avCases <<- Mcases
} #ElFin
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.