Description Usage Arguments Value See Also Examples
Calling plotDens()
plots densities of the sampled parameters and weights
from MCMC sampling.More specifically, all component parameters, K-1
of the
weights and the posterior parameters are considered in the density plots.
Note that this method calls the equivalent method from the parent class
mcmcoutputfixhier
.
1 2 |
x |
An |
dev |
A logical indicating, if the plots should be shown by a graphical
device. If plots should be stored to a file set |
... |
Further arguments to be passed to the plotting function. |
Densities of the MCMC samples.
mixturemcmc()
for performing MCMC sampling
plotTraces()
for plotting the traces of sampled values
plotHist()
for plotting histograms of sampled values
plotSampRep()
for plotting sampling representations of sampled values
plotPointProc()
for plotting point processes for sampled values
plotPostDens()
for plotting the posterior density of component parameters
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## Not run:
# Define a Poisson mixture model with two components.
f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2,
indicfix = TRUE)
# Simulate data from the mixture model.
f_data <- simulate(f_model)
# Define the hyper-parameters for MCMC sampling.
f_mcmc <- mcmc()
# Define the prior distribution by relying on the data.
f_prior <- priordefine(f_data, f_model)
# Start MCMC sampling.
f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
plotDens(f_output)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.