Description Usage Arguments Value See Also Examples
Calling plotHist()
plots histograms of the sampled parameters and weights
from MCMC sampling. In addition the parameters of the hierarchical prior are
plotted.
Note, this method is so far only implemented for mixtures of Poisson and Binomial distributions.
1 2 |
x |
An |
dev |
A logical indicating, if the plots should be shown by a graphical
device. If plots should be stored to a file set |
... |
Further arguments to be passed to the plotting function. |
Histograms of the MCMC samples.
mixturemcmc()
for performing MCMC sampling
mcmcpermute()
for permuting MCMC samples
plotTraces()
for plotting the traces of sampled values
plotDens()
for plotting densities of sampled values
plotSampRep()
for plotting sampling representations of sampled values
plotPointProc()
for plotting point processes for sampled values
plotPostDens()
for plotting the posterior density of component parameters
1 2 3 4 5 6 7 8 9 10 11 12 | # Define a Poisson mixture model with two components.
f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
# Simulate data from the mixture model.
f_data <- simulate(f_model)
# Define the hyper-parameters for MCMC sampling.
f_mcmc <- mcmc(storepost = FALSE)
# Define the prior distribution by relying on the data.
f_prior <- priordefine(f_data, f_model)
# Start MCMC sampling.
f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
f_outputperm <- mcmcpermute(f_output)
plotHist(f_outputperm)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.