plotPointProc-mcmcoutputpermfixhier-method: Plot point processes of the component parameters

Description Usage Arguments Value See Also Examples

Description

Calling plotPointProc() plots point processes of the sampled component parameters from MCMC sampling.

Note, this method is so far only implemented for mixture models of Poisson or Binomial distributons.

Usage

1
2
## S4 method for signature 'mcmcoutputpermfixhier'
plotPointProc(x, dev = TRUE, ...)

Arguments

x

An mcmcoutputpermfixhier object containing all sampled values.

dev

A logical indicating, if the plots should be shown by a graphical device. If plots should be stored to a file set dev to FALSE.

...

Further arguments to be passed to the plotting function.

Value

Point process of the MCMC samples.

See Also

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
## Not run: 
# Define a Poisson mixture model with two components.
f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2, 
                 indicfix = TRUE)
# Simulate data from the mixture model.
f_data <- simulate(f_model)
# Define the hyper-parameters for MCMC sampling.
f_mcmc <- mcmc(storepost = FALSE)
# Define the prior distribution by relying on the data.
f_prior <- priordefine(f_data, f_model)
# Start MCMC sampling.
f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
f_outputperm <- mcmcpermute(f_output)
plotPointProc(f_outputperm)

## End(Not run)

simonsays1980/finmix documentation built on Dec. 23, 2021, 2:25 a.m.