Description Usage Arguments Value See Also Examples
Calling plotPostDens()
plots posterior densities of the sampled component
parameters from MCMC sampling, if the number of components is two.
Note, this method is so far only implemented for Poisson or Binomial mixture distributions.
1 2 | ## S4 method for signature 'mcmcoutputpermbase'
plotPostDens(x, dev = TRUE, ...)
|
x |
An |
dev |
A logical indicating, if the plots should be shown by a graphical
device. If plots should be stored to a file set |
... |
Further arguments to be passed to the plotting function. |
Posterior densities of the MCMC samples.
mixturemcmc()
for performing MCMC sampling
mcmcpermute()
for permuting MCMC samples
plotTraces()
for plotting the traces of sampled values
plotHist()
for plotting histograms of sampled values
plotDens()
for plotting densities of sampled values
plotSampRep()
for plotting sampling representations of sampled values
plotPointProc()
for plotting point processes for sampled values
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ## Not run:
# Define a Poisson mixture model with two components.
f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
# Simulate data from the mixture model.
f_data <- simulate(f_model)
# Define the hyper-parameters for MCMC sampling.
f_mcmc <- mcmc(storepost = FALSE)
# Define the prior distribution by relying on the data.
f_prior <- priordefine(f_data, f_model)
# Do not use a hierarchical prior.
setHier(f_prior) <- FALSE
# Start MCMC sampling.
f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
f_outputperm <- mcmcpermute(f_output)
plotPostDens(f_outputperm)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.