Description Usage Arguments Value See Also Examples
Calling plotSampRep()
plots sampling representations of the sampled
component parameters from MCMC sampling.
Note, this method is only implemented for mixtures of Poisson and Binomial distributions.
1 2 | ## S4 method for signature 'mcmcoutputpermhierpost'
plotSampRep(x, dev = TRUE, ...)
|
x |
An |
dev |
A logical indicating, if the plots should be shown by a graphical
device. If plots should be stored to a file set |
... |
Further arguments to be passed to the plotting function. |
Densities of the MCMC samples.
mixturemcmc()
for performing MCMC sampling
mcmcpermute()
for permuting MCMC samples
plotTraces()
for plotting the traces of sampled values
plotHist()
for plotting histograms of sampled values
plotDens()
for plotting densities of sampled values
plotPointProc()
for plotting point processes of sampled values
plotPostDens()
for plotting posterior densities for sampled values
1 2 3 4 5 6 7 8 9 10 11 12 | # Define a Poisson mixture model with two components.
f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
# Simulate data from the mixture model.
f_data <- simulate(f_model)
# Define the hyper-parameters for MCMC sampling.
f_mcmc <- mcmc()
# Define the prior distribution by relying on the data.
f_prior <- priordefine(f_data, f_model)
# Start MCMC sampling.
f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
f_outputperm <- mcmcpermute(f_output)
plotSampRep(f_outputperm)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.