plotSampRep-mcmcoutputpermhierpost-method: Plot sampling representations for the component parameters

Description Usage Arguments Value See Also Examples

Description

Calling plotSampRep() plots sampling representations of the sampled component parameters from MCMC sampling.

Note, this method is only implemented for mixtures of Poisson and Binomial distributions.

Usage

1
2
## S4 method for signature 'mcmcoutputpermhierpost'
plotSampRep(x, dev = TRUE, ...)

Arguments

x

An mcmcoutputpermhierpost object containing all sampled values.

dev

A logical indicating, if the plots should be shown by a graphical device. If plots should be stored to a file set dev to FALSE.

...

Further arguments to be passed to the plotting function.

Value

Densities of the MCMC samples.

See Also

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
# Define a Poisson mixture model with two components.
f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
# Simulate data from the mixture model.
f_data <- simulate(f_model)
# Define the hyper-parameters for MCMC sampling.
f_mcmc <- mcmc()
# Define the prior distribution by relying on the data.
f_prior <- priordefine(f_data, f_model)
# Start MCMC sampling.
f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
f_outputperm <- mcmcpermute(f_output)
plotSampRep(f_outputperm)

simonsays1980/finmix documentation built on Dec. 23, 2021, 2:25 a.m.