## Copyright (C) 2013 Lars Simon Zehnder
#
# This file is part of finmix.
#
# finmix is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# finmix is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with finmix. If not, see <http://www.gnu.org/licenses/>.
#' Finmix `mcmcoutputfixhierpost` class
#'
#' @description
#' This class inherits from the `mcmcoutputfixhier` class and adds posterior
#' density parameters to the MCMC sampling output. The storage of posterior
#' parameters is controlled by the slot `storepost` in the [mcmc-class]
#' class. If set to `TRUE` posterior parameters are stored in the output of the
#' MCMC sampling.
#'
#' @slot post A named list containing a named list `par` with arrays for the
#' posterior density parameters.
#' @exportClass mcmcoutputfixhierpost
#' @rdname mcmcoutputfixhierpost-class
#'
#' @seealso
#' * [mcmcoutputfixhier-class] for the parent class
#' * [mixturemcmc()] for performing MCMC sampling
#' * [mcmc-class] for the class defining the MCMC hyper-parameters
#' * [mcmc()] for the `mcmc` class constructor
.mcmcoutputfixhierpost <- setClass("mcmcoutputfixhierpost",
representation(post = "list"),
contains = c("mcmcoutputfixhier"),
validity = function(object) {
## else: OK
TRUE
},
prototype(post = list())
)
#' Shows a summary of an `mcmcoutputfixhierpost` object.
#'
#' @description
#' Calling [show()] on an `mcmcoutputfixhierpost` object gives an overview
#' of the `mcmcoutputfixhierpost` object.
#'
#' @param object An `mcmcoutputfixhierpost` object.
#' @returns A console output listing the slots and summary information about
#' each of them.
#' @exportMethod show
#' @keywords internal
setMethod(
"show", "mcmcoutputfixhierpost",
function(object) {
cat("Object 'mcmcoutput'\n")
cat(" class :", class(object), "\n")
cat(" M :", object@M, "\n")
cat(" burnin :", object@burnin, "\n")
cat(" ranperm :", object@ranperm, "\n")
cat(
" par : List of",
length(object@par), "\n"
)
cat(
" log : List of",
length(object@log), "\n"
)
cat(
" hyper : List of",
length(object@hyper), "\n"
)
cat(
" post : List of",
length(object@post), "\n"
)
cat(
" model : Object of class",
class(object@model), "\n"
)
cat(
" prior : Object of class",
class(object@prior), "\n"
)
}
)
#' Plot traces of MCMC sampling
#'
#' @description
#' Calling [plotTraces()] plots the MCMC traces of the mixture log-likelihood
#' , the mixture log-likelihood of the prior distribution, the log-likelihood
#' of the complete data posterior, or the weights and parameters if `lik` is
#' set to `1`. If `lik` is set to `0` the parameters of the components and the
#' posterior parameters are plotted together with `K-1` weights.
#'
#' Note that this method calls the equivalent method from the parent class
#' `mcmcoutputfixhier`.
#'
#' @param x An `mcmcoutputfixhierpost` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param lik An integer indicating, if the log-likelihood traces should be
#' plotted (default). If set to `0` the traces for the parameters
#' and weights are plotted instead.
#' @param col A logical indicating, if the plot should be colored.
#' @param ... Further arguments to be passed to the plotting function.
#' @return A plot of the traces of the MCMC samples.
#' @exportMethod plotTraces
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2,
#' indicfix = TRUE)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc()
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotTraces(f_output, lik = 0)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPointProc()] for plotting point processes for sampled values
#' * [plotPostDens()] for plotting the posterior density of component parameters
setMethod(
"plotTraces", signature(
x = "mcmcoutputfixhierpost",
dev = "ANY",
lik = "ANY",
col = "ANY"
),
function(x, dev = TRUE, lik = 1, col = FALSE, ...) {
## Call method 'plot()' from 'mcmcoutputfixhier'
callNextMethod(x, dev, lik, col, ...)
}
)
#' Plot histograms of the parameters and weights
#'
#' @description
#' Calling [plotHist()] plots histograms of the sampled parameters and weights
#' from MCMC sampling.More specifically, all component parameters, `K-1` of the
#' weights and the posterior parameters are considered in the histogram plots.
#'
#' Note that this method calls the equivalent method from the parent class
#' `mcmcoutputfixhier`.
#'
#' @param x An `mcmcoutputfixhierpost` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Histograms of the MCMC samples.
#' @exportMethod plotHist
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2,
#' indicfix = TRUE)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc()
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotHist(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPointProc()] for plotting point processes for sampled values
#' * [plotPostDens()] for plotting the posterior density of component parameters
setMethod(
"plotHist", signature(
x = "mcmcoutputfixhierpost",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
## Call 'plotHist()' from 'mcmcoutputfixhier'
callNextMethod(x, dev, ...)
}
)
#' Plot densities of the parameters and weights
#'
#' @description
#' Calling [plotDens()] plots densities of the sampled parameters and weights
#' from MCMC sampling.More specifically, all component parameters, `K-1` of the
#' weights and the posterior parameters are considered in the density plots.
#'
#' Note that this method calls the equivalent method from the parent class
#' `mcmcoutputfixhier`.
#'
#' @param x An `mcmcoutputfixhierpost` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Densities of the MCMC samples.
#' @exportMethod plotDens
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2,
#' indicfix = TRUE)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc()
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotDens(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPointProc()] for plotting point processes for sampled values
#' * [plotPostDens()] for plotting the posterior density of component parameters
setMethod(
"plotDens", signature(
x = "mcmcoutputfixhierpost",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
## Call 'plotDens()' from 'mcmcoutputfixhier'
callNextMethod(x, dev, ...)
}
)
#' Plot point processes of the component parameters
#'
#' @description
#' Calling [plotPointProc()] plots point processes of the sampled component
#' parameters from MCMC sampling.
#'
#' Note, this methid calls the equivalent method from the parent class
#' `mcmcoutputfixhier`.
#'
#' @param x An `mcmcoutputfixhierpost` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Point process of the MCMC samples.
#' @exportMethod plotPointProc
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2,
#' indicfix = TRUE)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc()
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotPointProc(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPostDens()] for plotting posterior densities for sampled values
setMethod(
"plotPointProc", signature(
x = "mcmcoutputfixhierpost",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
## Call 'plotPointProc()' from 'mcmcoutputfixhier'
callNextMethod(x, dev, ...)
}
)
#' Plot sampling representations for the component parameters.
#'
#' @description
#' Calling [plotSampRep()] plots sampling representations of the sampled
#' component parameters from MCMC sampling.
#'
#' Note, this method calls the equivalent method of the parent class
#' `mcmcoutputfixhier`.
#'
#' @param x An `mcmcoutputfixhierpost` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Sampling representation of the MCMC samples.
#' @exportMethod plotSampRep
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2,
#' indicfix = TRUE)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc()
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotSampRep(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotPointProc()] for plotting point processes of sampled values
#' * [plotPostDens()] for plotting posterior densities for sampled values
setMethod(
"plotSampRep", signature(
x = "mcmcoutputfixhierpost",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
## Call 'plotSampRep()' from 'mcmcoutputfixhier'
callNextMethod(x, dev, ...)
}
)
#' Plot posterior densities of the component parameters
#'
#' @description
#' Calling [plotPostDens()] plots posterior densities of the sampled component
#' parameters from MCMC sampling, if the number of components is two.
#'
#' Note, this method calls the equivalent method of the parent class
#' `mcmcoutputfixhier`.
#'
#' @param x An `mcmcoutputfixhierpost` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Posterior densities of the MCMC samples.
#' @exportMethod plotPostDens
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2,
#' indicfix = TRUE)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc()
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotPostDens(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPointProc()] for plotting point processes for sampled values
setMethod(
"plotPostDens", signature(
x = "mcmcoutputfixhierpost",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
## Call 'plotPostDens' from 'mcmcoutputfixhier'
callNextMethod(x, dev, ...)
}
)
#' Constructs a sub-chain of MCMC samples
#'
#' @description
#' Calling [subseq()] constructs an MCMC sub-chain from the samples in the
#' passed-in `mcmcoutput` object specfied by the index `array` in `index`. This
#' can be advantageous, if chains are non-stationary. For successful MCMC
#' sampling the chain must be converged to the target distribution, the true
#' distribution of parameters, weights and indicators.
#'
#' Note that this method calls the equivalent method from the parent class and
#' adds the sub-chains for the posterior density parameters.
#'
#' @param object An `mcmcoutput` object containing all sampled values.
#' @param index An array specifying the extraction of the sub-chain.
#' @return An `mcmcoutput` object containing the values from the sub-chain.
#' @exportMethod subseq
#' @keywords internal
#'
#' @export subseq
setMethod(
"subseq", signature(
object = "mcmcoutputfixhierpost",
index = "array"
),
function(object, index) {
## TODO: Check arguments via .validObject ##
dist <- object@model@dist
## Call 'subseq()' from 'mcmcoutputfixhier'
object <- callNextMethod(object, index)
## post ##
if (dist == "poisson") {
.subseq.Poisson.Post(object, index)
} else if (dist == "binomial") {
.subseq.Binomial.Mcmcoutputfixpost(object, index)
} else if (dist %in% c("normal", "student")) {
.subseq.Norstud.Mcmcoutputfixpost(object, index)
} else if (dist %in% c("normult", "studmult")) {
.subseq.Normultstud.Mcmcoutputfixpost(object, index)
}
}
)
#' Swaps elements between components
#'
#' @description
#' Not yet implemented.
#'
#' @param object An `mcmcoutput` object containing the sampled values.
#' @param index An array specifying the extraction of the values.
#' @return An `mcmcoutput` object with swapped elements.
#' @exportMethod swapElements
#' @keywords internal
setMethod(
"swapElements", signature(
object = "mcmcoutputfixhierpost",
index = "array"
),
function(object, index) {
if (object@model@K == 1) {
return(object)
} else {
## Check arguments, TODO: .validObject ##
dist <- object@model@dist
## Call 'swapElements()' from 'mcmcoutputfixhier'
object <- callNextMethod(object, index)
if (dist == "poisson") {
.swapElements.Poisson.Post(object, index)
} else if (dist == "binomial") {
.swapElements.Binomial.Mcmcoutputfixpost(object, index)
} else if (dist %in% c("normal", "student")) {
.swapElements.Norstud.Mcmcoutputfixpost(object, index)
} else if (dist %in% c("normult", "studmult")) {
.swapElements.Normultstud.Mcmcoutputfixpost(object, index)
}
}
}
)
#' Getter method of `mcmcoutputfixpost` class.
#'
#' Returns the `post` slot.
#'
#' @param object An `mcmcoutputfixpost` object.
#' @returns The `post` slot of the `object`.
#' @exportMethod getPost
#' @keywords internal
#'
#' @examples
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2,
#' indicfix = TRUE)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc()
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Do not use hierarchical sampling
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' # Get the slot.
#' getPost(f_output)
#'
#' @seealso
#' * [mcmcoutput-class] for the class definition
#' * [mixturemcmc()] for performing MCMC sampling
setMethod(
"getPost", "mcmcoutputfixhierpost",
function(object) {
return(object@post)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.